
SQL (Standard Query Language)

Banco de Dados

marisangila.alves@catolicasc.org.br Marisangila Alves, MSc

Modelo Conceitual - Diagrama Entidade Relacionamento

COMPRAJOGADOR JOGOS
(0,N) (0,N)

IDNOME
ID

VERSÃO
DATAID NOME

IDADE
E-MAIL

ENDEREÇO

CEP

RUA NÚMERO
BAIRRO 2

Modelo Conceitual - Diagrama Entidade Relacionamento

TEMCATEGORIA JOGO
(1,1) (0,N)

ID
NOMEID

VERSÃO
DATA

ID NOME

3

Modelo Lógico

4

Como definir a chave estrangeira

● Grau de cardinalidade:

○ (1, 1): A chave estrangeira deve ser inserida em qualquer uma

das duas entidades.

○ (1, N): A chave estrangeira deve ser inserida na entidade de grau

N.

○ (N, N): É necessário criar uma nova entidade (tabela)

associativa com duas chaves estrangeiras. Uma para cada

entidade que gerou o relacionamento.
5

Modelo Físico

6

Entidades

Entidades (Tabelas)

7

Atributos

Colunas (Atributos) Atributo Identificador -> Chave Primária

8

Relacionamento

Chaves Estrangeiras (Relacionamento)

9

Dados

Linhas(Registros)

10

DDL - Data Definition
Language

11

DDL - Data Definition Language

● CREATE
● DROP
● ALTER
● TRUNCATE
● COMMENT
● RENAME

12

Criar Banco de Dados

CREATE DATABASE escola;

USE escola;

13

CRIAR TABELA

CREATE TABLE nome_tabela(
nome_campo1 tipo,
nome_campo2 tipo
);

CREATE TABLE aluno(
PK_aluno INT,
nome_aluno VARCHAR(100),
email_aluno VARCHAR(100)
); 14

CRIAR TABELA: Exemplo

CREATE TABLE aluno(
PK_aluno INT PRIMARY KEY AUTO_INCREMENT NOT NULL,

nome_aluno VARCHAR(100) NOT NULL,
email_aluno VARCHAR(200) NOT NULL,
data_nascimento_aluno DATE NOT NULL,
idade_aluno INT NULL,
horario_entrada_aluno TIME NOT NULL,
horario_saida_aluno TIME NOT NULL,
mensalidade_aluno DECIMAL(10,2) NOT NULL,
eh_bolsista_aluno BIT DEFAULT(0) NULL,
ano_ingresso_aluno YEAR NOT NULL

); 15

CRIAR TABELA: Tipos de Dados

● INT: valores inteiros

● DECIMAL(MAXIMO_CASAS, MAXIMO_CASAS_DECIMAIS):
valores decimais

○ DECIMAL(10,2)

● VARCHAR(MAXIMO): caractere
○ VARCHAR(50)

● BIT: valores binários (0 ou 1) 16

CRIAR TABELA: Tipos de Dados

● DATE: data

● TIME: horário

● DATETIME: data e horário

● YEAR: ano

17

CRIAR TABELA: Chave primária

PRIMARY KEY: Define a coluna como chave primária.

AUTO_INCREMENT: A inserção da chave primária é
automática.

O banco de dados é responsável por inserir valores
únicos.

18

CRIAR TABELA: colunas nulas

NULL: permite que uma coluna tenha valor nulo.

NOT NULL: valores nulos não são permitidos.

19

CRIAR TABELA: Valor default

DEFAULT: permite que um valor padrão seja definido.
É possível cobinar com o NULL.

Se o valor não for inserido porque valores nulos são
permitidos, a coluna recebe o valor padrão

20

Adicionar chave estrangeira

 CREATE TABLE turma(
 pk_turma int PRIMARY KEY AUTO_INCREMENT NOT NULL,
 nome_turma varchar(100) NOT NULL
);

CREATE TABLE aluno(
 pk_aluno int PRIMARY KEY AUTO_INCREMENT NOT NULL,
 nome_aluno varchar(100) NOT NULL,
 fk_turma int NOT NULL,
 FOREIGN KEY (fk_turma) REFERENCES turma(pk_turma)
);

21

Adicionar chave estrangeira

Atenção: ao criar uma chave estrangeira é importante prestar
atenção na ordem de criação das tabelas.

Se a tabela tem uma dependência de outra tabela (Chave
estrangeira), a tabela referenciada deve ser criada primeiro.

22

DELETE ON CASCADE

 CREATE TABLE aluno(
 pk_aluno int PRIMARY KEY AUTO_INCREMENT NOT NULL,
 nome_aluno varchar(100) NOT NULL,
 fk_turma int NOT NULL,
 FOREIGN KEY (fk_turma) REFERENCES turma(pk_turma)
 ON DELETE CASCADE
);

A cláusula "DELETE CASCADE" é usada em um banco de dados relacionado para automatizar a
exclusão de registros dependentes em tabelas relacionadas quando um registro pai é excluído.
Essa cláusula garante a consistência dos dados, removendo automaticamente registros
relacionados em cascata.

23

Excluir Tabela ou Banco de Dados

DROP TABLE aluno;
DROP DATABASE escola;

24

Alterar Tabela

Excluir Coluna:
ALTER TABLE aluno
DROP COLUMN email_aluno;

Adicionar Coluna:
ALTER TABLE aluno
ADD (telefone_aluno VARCHAR(100));

25

Alterar Tabela

Renomear coluna:

ALTER TABLE aluno
CHANGE cpf_aluno CPF_aluno VARCHAR(100);

26

Alterar Tabela

Alterar o tipo da coluna:

ALTER TABLE aluno
MODIFY COLUMN cpf_aluno VARCHAR(100);

27

Alterar Tabela

Excluir coluna:

ALTER TABLE aluno
DROP COLUMN cpf_aluno;

28

Excluir elementos da tabela

TRUNCATE aluno;

Diferença entre DROP e TRUNCATE:
● TRUNCATE:

○ exclui registros.
● DROP:

○ Exclui toda estrutura da tabela.
29

Comentário

Única linha:
-- DROP TABLE aluno;
Múltiplas linhas:
/* CREATE TABLE aluno(

nome VARCHAR(100)
)
*/

30

Renomear

● Renomear tabela:
ALTER TABLE aluno

RENAME TO estudante;

31

Alterar o auto incremento

● O auto incremento permite que um identificador
único seja gerado quando um novo registro é
inserido em uma tabela de forma automática.

● Redefinir auto incremento:

ALTER TABLE aluno
AUTO_INCREMENT = 1; 32

DML - Data Manipulation
Language

33

DML - Data Manipulation Language

34

DML - Data Manipulation Language

INSERT
UPDATE
DELETE

35

INSERIR REGISTROS

INSERT INTO nome_tabela
VALUES(“valor”,”valor”)

INSERT INTO jogador
(coluna1,coluna2)
VALUES(“Boby”,18)

36

INSERIR REGISTROS - inserir data

INSERT INTO aluno (nome_aluno,data_nascimento_aluno, idade_aluno,
horario_entrada_aluno, mensalidade_aluno, eh_bolsista_aluno)

VALUES
('Lucy', 'lucy@outlook.com', STR_TO_DATE('01/10/2005', '%d/%m/%Y'),
18, STR_TO_DATE('07:00','%H:%i'), 1129.90, 0),

37

INSERIR REGISTROS - formatação

● DATE: data

○ STR_TO_DATE('16/10/2023', '%d/%m/%Y')

● TIME: horário

○ STR_TO_DATE('07:35', '%h:%i'),

● DATETIME: data e horário

○ STR_TO_DATE('16/10/2023 07:36', '%d/%m/%Y %H:%i'),

● YEAR: ano 38

INSERIR REGISTROS - múltiplos registros

INSERT INTO aluno (nome_aluno,data_nascimento_aluno, idade_aluno)
VALUES
 ('Lucy', 'lucy@outlook.com', 18),
 ('John', 'john@gmail.com', 25),
 ('Maria', 'maria@yahoo.com', 23);

39

ATUALIZAR REGISTRO

UPDATE nome_tabela
SET nome_campo1 = “valor”

UPDATE jogador
SET nome = “Ane”

40

INCORRETO! Alteração de
todos os registros

ATUALIZAR REGISTRO

UPDATE nome_tabela
SET nome_campo2 = “valor”
WHERE nome_campo1 = “valor”

UPDATE jogador
SET nome = “Ane”
WHERE id=1 41

EXCLUIR REGISTRO

DELETE FROM nome_tabela
WHERE nome_campo2 = “valor”

DELETE FROM jogador
WHERE id = 1

42

DQL - Data Query Language

43

DQL - Data Query Language

SELECT
WHERE

44

CONSULTAR REGISTRO

SELECT * FROM nome_tabela

SELECT nome_campo1,nome_campo2
FROM nome_tabela

45

CONSULTAR REGISTRO

SELECT nome,idade
FROM jogador

46

CONSULTAR REGISTRO

SELECT id,nome
FROM jogador
WHERE idade > 18

47

Operadores

Operadores lógicos:

● AND:
● OR
● NOT

Operadores de comparação:

● !=
● >=
● <=
● >
● <
● =, <>

SELECT nome FROM jogador

WHERE idade >= 16 AND idade = < 20;

SELECT nome FROM jogador

WHERE id_jogo= 2 OR id_jogo= 3;

48

FUNÇÕES

49

Funções

● COUNT(): Retorna o total de linhas.

● AVG(): Retorna a média de uma

coluna.

● MIN(): Retorna o registro de menor

valor de uma coluna.

● MAX(): Retorna o registro de maior.

● Quantos jogadores são cadastrados?

SELECT COUNT(id) FROM jogador;

● Qual a média de idade dos jogadores?

SELECT AVG (idade) FROM
jogador;

● Qual idade máxima dos jogadores?

SELECT MAX(idade) FROM jogador;

● Qual idade mínima dos jogadores?

SELECT MIN(idade) FROM jogador;

50

Funções

ORDER BY(): Ordena os registros.

● Jogadores ordenados pela idade em
ordem crescente

SELECT nome FROM jogador
ORDER BY idade;

● Jogadores ordenados pela idade em
ordem decrescente

SELECT nome FROM jogador
ORDER BY idade DESC;

51

Funções

GROUP BY(): agrupa os registros.

● Jogadores agrupados pelo id do jogo (assim todos os que
tiverem o mesmo id de jogo aparecem na mesma linha)

SELECT nome FROM jogador GROUP BY id_jogo

● Podemos usar função COUNT() para contar quantos
jogadores compraram cada jogo.

SELECT COUNT(id_jogo)FROM jogador GROUP BY
id_jogo

52

Funções

STR_TO_DATE(): Esta função
permite formatar uma string em
formatos como datetime, date ou
time.

INSERT INTO (data_jogador_jogo) VALUES
(STR_TO_DATE(‘10/05/2020’,’%d/%m/%Y’));

INSERT INTO (data_hora_jogador_jogo) VALUES
(STR_TO_DATE(‘10/05/2020 10:35’,’%d/%m/%Y
%h:%i’));

INSERT INTO (hora_jogador_jogo) VALUES
(STR_TO_DATE(‘10:35’,’%h:%i’));

53

Funções

● FLOOR(): arredonda para baixo.
● CEIL(): arredonda para cima.
● TRUNCATE(): trunca o valor

considerando apenas a
quantidade de casas
informadas.

● ROUND():arredonda
considerando o número de
casas informadas.

SELECT FLOOR(AVG(idade_jogador)) FROM JOGADOR;

SELECT CEIL(AVG(idade_jogador)) FROM JOGADOR;

SELECT TRUNCATE(AVG(idade_jogador),1) FROM
JOGADOR;

SELECT ROUND(AVG(idade_jogador),1) FROM
JOGADOR;

54

NOVO EXEMPLO

55

DDL tabela turma
CREATE TABLE turma (
 pk_turma int NOT NULL,
 nome_turma varchar(100) NOT
NULL,
 ano_turma int NOT NULL
);

56

NOVO EXEMPLO

57

DDL tabela estudante

CREATE TABLE estudante (

 pk_aluno int NOT NULL PRIMARY KEY AUTO_INCREMENT ,

 nome_aluno varchar(100) NOT NULL,

 sobrenome_aluno varchar(100) DEFAULT NULL,

 cpf_aluno varchar(11) DEFAULT NULL,

 telefone_aluno varchar(11) DEFAULT NULL,

 fk_turma int DEFAULT NULL,

 data_nascimento_aluno date DEFAULT NULL,

 idade_aluno int NOT NULL,

 ano_ingresso_aluno int NOT NULL,

 ano_egresso_aluno int NOT NULL

 FOREIGN KEY fk_turma REFERENCES turma (pk_turma)

)
58

GROUP BY:

1. Seleciona estudantes da turma 2.

1. Seleciona estudantes da turma 2

ou da turma 3 e os agrupa por

turma.

1. Seleciona estudantes da turma 2

ou turma 3 e os agrupa por turma e

conta quando estudante tem por

turma.

SELECT * FROM estudante WHERE
fk_turma=2;

SELECT * FROM estudante WHERE
fk_turma=2 OR fk_turma=3 GROUP BY
fk_turma;

SELECT count(pk_aluno) FROM
estudante WHERE fk_turma=2 OR
fk_turma=3 GROUP BY fk_turma;

59

INNER JOIN
JOIN/LEFT
JOIN/RIGHT

60

JOIN/ INNER JOIN

Junção que combina registros de duas ou
mais tabelas

SELECT * FROM estudante
JOIN turma;

SELECT * FROM estudante
INNER JOIN turma;

61

INNER JOIN
condição: ON

Retorna apenas os registros que têm
correspondência nas duas tabelas
envolvidas na junção.

Combina as linhas com base em uma
condição de correspondência
especificada na cláusula ON.

Se não houver correspondência, as linhas
não serão incluídas no resultado.

Não traz valores nulos.

SELECT * FROM estudante
INNER JOIN turma
ON estudante.fk_turma =
turma.pk_turma

62

LEFT JOIN

Retorna todos os registros da tabela à
esquerda da junção (tabela esquerda) e os
registros correspondentes da tabela à
direita da junção (tabela direita).

Se não houver correspondência na tabela
direita, serão retornados valores NULL.

SELECT * FROM estudante
LEFT JOIN turma
ON estudante.fk_turma =
turma.pk_turma

63

RIGHT JOIN

Retorna todos os registros da tabela à
direita da junção (tabela direita) e os
registros correspondentes da tabela à
esquerda da junção (tabela esquerda).

Se não houver correspondência na tabela
esquerda, serão retornados valores NULL.

SELECT * FROM estudante
RIGHT JOIN turma
ON estudante.fk_turma =
turma.pk_turma

64

UNION

65

UNION

Combina os resultados de duas
consultas diferentes realizadas nas
tabelas.

SELECT E.nome_aluno, T.nome_turma
FROM estudante AS E
LEFT JOIN turma AS T ON E.fk_turma =
T.pk_turma

UNION

SELECT E.nome_aluno, T.nome_turma
FROM estudante AS E
RIGHT JOIN turma AS T ON E.fk_turma =
T.pk_turma;

66

CONSULTAS
ANINHADAS

67

Uma consulta aninhada, também conhecida

como subconsulta (subselect), é uma consulta

SQL que é incorporada dentro de outra consulta

SQL. Ela permite usar o resultado de uma

consulta interna como parte da condição ou da

seleção na consulta externa.

Em uma consulta aninhada, a consulta interna é

executada primeiro e seu resultado é usado na

consulta externa. A consulta interna é

encapsulada dentro da cláusula FROM, WHERE,

ou SELECT da consulta externa.

SELECT nome
FROM estudante
WHERE pk_aluno IN (SELECT
pk_aluno FROM estudante
WHERE idade = 32);

68

VIEW

69

VIEW:

Uma view (visão) em um banco de
dados é uma representação virtual de
uma tabela ou de uma combinação
de tabelas. Ela é criada a partir de
uma consulta SQL e pode ser usada
como uma tabela normal para
consulta, mas não armazena dados
fisicamente.

CREATE VIEW
viewAlunosEntre30e32 AS

SELECT E.nome_aluno,
E.idade_aluno,
T.nome_turma FROM
estudante AS E
JOIN turma AS T
ON E.fk_turma = T.pk_turma
WHERE E.idade_aluno >= 30
AND E.idade_aluno <= 32
ORDER BY E.nome_aluno;

70

Por que view?

● Reutilização: As views são objetos permanentes, o que é altamente vantajoso do
ponto de vista produtivo, já que podem ser acessadas simultaneamente por
vários usuários.

● Segurança: As views possibilitam ocultar colunas específicas de uma tabela. Ao

criar uma view com as colunas que desejamos exibir, podemos disponibilizá-la

aos usuários, fornecendo maior controle sobre a exposição de dados sensíveis.

71

Por que view?

● Simplificação do código: As views nos permitem criar um código de
programação mais conciso, pois podem conter uma consulta SELECT complexa.
Assim, ao criar views para os programadores, poupamos seu esforço de criar
consultas SELECT, resultando em maior produtividade para a equipe de
desenvolvimento.

● Desempenho: Em determinados casos, as visualizações podem aprimorar o
desempenho do sistema. Por exemplo, é possível criar uma visualização que
armazene o resultado de uma consulta complexa e atualizá-la periodicamente
em segundo plano. Dessa forma, evitamos executar a consulta a cada acesso
aos dados, o que contribui para a eficiência geral do sistema. 72

TRIGGERS

73

Trigger:

Uma trigger (gatilho) em um banco de dados é
um objeto associado a uma tabela que é
acionado automaticamente quando ocorre um
evento específico, como inserção, atualização
ou exclusão de dados nessa tabela. Ela
consiste em um conjunto de instruções SQL
que são executadas em resposta ao evento
acionador.

CREATE TRIGGER
trg_UpdateLastModified
BEFORE UPDATE ON clientes
FOR EACH ROW
BEGIN
 SET
NEW.ultima_atualizacao =
CURRENT_TIMESTAMP;
END

74

STORED
PROCEDURE

75

Stored Procedure:

Uma stored procedure, é um objeto do banco
de dados que contém um conjunto de
instruções SQL predefinidas. Ela é armazenada
no banco de dados e pode ser chamada e
executada posteriormente.

CREATE PROCEDURE
getAnimalsByType (
 IN p_tipo VARCHAR(50)
)
BEGIN
 SELECT
 id,
 nome,
 tipo,
 idade,
 peso
 FROM animal
 WHERE tipo = p_tipo
 ORDER BY nome;
END

76

DCL - Data Control
Language

77

DQL - Data Control Language

CREATE USER
DROP USER
CREATE ROLE
DROP ROLE
ALTER USER
ALTER ROLE
GRANT
REVOKE

78

Controle os privilégios
e permissões de
acesso em um banco
de dados.

1. Criar usuário.
2. Excluir usuário.
3. Cria papel.
4. Excluir papel.
5. Adicionar permissões.
6. Remover permissões.
7. Atribuir permissão geral.

CREATE USER fulano;
CREATE USER ciclano
IDENTIFIED BY “1234”;

CREATE ROLE adminstrador;
CREATE ROLE usuario;

GRANT SELECT, INSERT, UPDATE
ON turma TO administrador;

REVOKE SELECT, INSERT, UPDATE
ON estudante FROM usuario;

GRANT ALL PRIVILEGES ON
clinica_veterinaria.* TO
administrador;

79

DCL - Data Transaction
Language

80

Usados para garantir a
consistência dos dados em um
banco de dados, permitindo que
as alterações sejam tratadas de
forma controlada e revertidas se
necessário.

● START TRANSACTION:
Inicia uma sequência de

comandos.
● COMMIT:

Confirma as alterações.
● ROLLBACK:

Caso ocorra algum erro,
reverta as alterações parciais.

START TRANSACTION; -- Inicia a
transação

-- Atualiza o saldo da conta do
cliente 1
UPDATE clientes SET saldo = saldo - 100
WHERE id = 1;

-- Atualiza o saldo da conta do
cliente 2
UPDATE clientes SET saldo = saldo + 100
WHERE id = 2;

COMMIT; -- Confirma a transação

-- Se ocorrer algum erro ou problema,
podemos executar ROLLBACK para desfazer
as alterações:

-- ROLLBACK; -- Desfaz a transação e
restaura o estado anterior

81

REFERÊNCIAS:

DATE, Christopher J. Introdução a sistemas de bancos de dados. Elsevier

Brasil, 2004.

MARIADB. Documentação MariaDB. MariaDB Knowledge Base, 2026.

Disponível em: https://mariadb.com/kb/pt-br/documentacao-mariadb/.

Acesso em: 04 fev. 2026

82

https://mariadb.com/kb/pt-br/documentacao-mariadb/?utm_source=chatgpt.com

Esses slides estão protegidos por uma licença Creative Commons.

https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode

https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode

SQL (Standard Query Language)

Banco de Dados

marisangila.alves@catolicasc.org.br Marisangila Alves, MSc

