SQL (Standard Query Language)

% Banco de Dados

Modelo Conceitual - Diagrama Entidade Relacionamento

(O,N) (O,N)

JOGADOR COMPRA JOGOS

Modelo Conceitual - Diagrama Entidade Relacionamento

JOGO

CATEGORIA

Modelo Ldgico

jogador

PK_jogador
nome_jogador
idade_jogador
email_principal_jogador
email_alternativo_jogador
rua_jogador
numero_jogador
bairro_jogador

cep_jogador

jogador_jogo

PK_jogador_jogo
FK_jogador
FK_jogo
data_jogador_jogo

jogo

PK_jogo
nome_jogo
versao_jogo
FK_categoria

1

categoria

PK_categoria
nome_categoria

Como definir a chave estrangeira

e Grau de cardinalidade:
o (1, 1): A chave estrangeira deve ser inserida em qualquer uma
das duas entidades.
o (1, N): A chave estrangeira deve ser inserida na entidade de grau
N.
o (N, N): E necessério criar uma nova entidade (tabela)
associativa com duas chaves estrangeiras. Uma para cada

entidade que gerou o relacionamento.

Modelo Fisico

_l jogador_jogo v —Jogo Y
PK_jogador_jogo INT PK J0go/INT
:] jojador v ? FK_jogador INT L N > nome_jogo VARCHAR(100)
PK_jogador INT ? FK_jogo INT (: | < versao_jogo VARCHAR(10)
»nome_jogador VARCHAR(100) % F3. categorial INT
7 idade_jogador INT >
email_principal_jogador VARCHAR(45)
email_alternativo_jogador VARCHAR(45) 4
’ rua_jogador VARCHAR(45)
» num ero_jogador VARCHAR(45)
cep_jogador VARCHAR(45) _ categoria v
bairro_jogador VARCHAR (45) PK _categoria INT
B > nome_categoria VARCHAR(100)
>

Entidades

Entidades (Tabelas)

Jogo
1D Nome Versao
1|CS 1.2
2|LoL 8.9.2005
3 [Minecraft 4.95.2002
4|Valorant 20.3.2005

Jogador_Jogos
ID Data ID_Jogo ID_Jogador
16/07/2022
22/07/2022
10/08/2022
24/08/2022

Wi -
N W | &=

Atributos

Colunas (Atributos) Atributo Identificador -> Chave Primaria

Jogo
ID Nome Versao
1(CS 1.2
2|LoL 8.9.2005
3| Minecraft 4.9.2002
4|Valorant 20.3.2005
Jogador_Jogos
ID Data ID_Jogo ID_Jogador

1 16/07/2022 1 1

2 22/07/2022 4 1

3 100082022 30 K]

4| 241082022 2f 8

Relacionamento

Chaves Estrangeiras (Relacionamento)

Jogo
1D Nome Versao
1(CS 1.2
2|LoL 8.9.2005
3| Minecraft 4.9.2002
4|Valorant 20.3.2005
Jogador_Jogos
ID Data ID_Jogo ID_Jogador

1 16/07/2022 1 1

2 22/07/2022 4 1

3 100082022 30 K]

4| 241082022 2f 9

Jogo

ID Nome Versao
1|CS 1.2
2|LoL 8.9.2005
3| Minecraft 492002
4|Valorant 20.3.2005

10

DDL - Data Definition
Language

DDL - Data Definition Language

CREATE
DROP
ALTER
TRUNCATE
COMMENT
RENAME

12

Criar Banco de Dados

CREATE DATABASE escola;

USE escola;

CRIAR TABELA

CREATE TABLE nome tabela (
nome campol tipo,
nome campoZ tipo
) ;
CREATE TABLE aluno (
PK aluno INT,

nome aluno VARCHAR(100),
emall aluno VARCHAR (100)

)- 14
’

CRIAR TABELA: Exemplo

CREATE TABLE aluno (

PK aluno INT PRIMARY KEY AUTO INCREMENT NOT NULL,
nome aluno VARCHAR(100) NOT NULL,
email aluno VARCHAR(200) NOT NULL,
data nascimento aluno DATE NOT NULL,
idade aluno INT NULL,
horario entrada aluno TIME NOT NULL,
horario saida aluno TIME NOT NULL,
mensalidade aluno DECIMAL(10,2) NOT NULL,
eh bolsista aluno BIT DEFAULT (0) NULL,
ano ingresso aluno YEAR NOT NULL

). 15
’

CRIAR TABELA: Tipos de Dados

e INT: valores inteiros

e DECIMAL(MAXIMO_CASAS, MAXIMO_CASAS_DECIMAIS):
valores decimais
o DECIMAL(10,2)

e VARCHAR(MAXIMO): caractere
o VARCHAR(50)

e BIT: valores binéarios (0 ou 1) b

CRIAR TABELA: Tipos de Dados

e DATE: data
e TIME: horario

e DATETIME: data e horario
e YEAR: ano

17

CRIAR TABELA: Chave primaria

PRIMARY KEY: Define a coluna como chave primaria.

AUTO_INCREMENT: A insercao da chave primaria é
automatica.

O banco de dados é responsavel por inserir valores
unicos.

18

CRIAR TABELA: colunas nulas

NULL: permite que uma coluna tenha valor nulo.

NOT NULL: valores nulos nao sao permitidos.

19

CRIAR TABELA: Valor default

DEFAULT: permite que um valor padrao seja definido.
E possivel cobinar com o NULL.

Se o valor nao for inserido porque valores nulos sao
permitidos, a coluna recebe o valor padrao

20

Adicionar chave estrangeira

CREATE TABLE turma (

pk_turma int PRIMARY KEY AUTO INCREMENT NOT NULL,

nome turma varchar (100) NOT NULL
) ;

CREATE TABLE aluno (

pk_aluno int PRIMARY KEY AUTO_ INCREMENT NOT NULL,
nome aluno varchar (100) NOT NULL,
fk turma int NOT NULL,

FOREIGN KEY (fk turma) REFERENCES turma (pk turma)

21

Adicionar chave estrangeira

Atencdo: ao criar uma chave estrangeira é importante prestar
atencao na ordem de criacao das tabelas.

Se a tabela tem uma dependéncia de outra tabela (Chave
estrangeira), a tabela referenciada deve ser criada primeiro.

22

DELETE ON CASCADE

A clausula "DELETE CASCADE" é usada em um banco de dados relacionado para automatizar a
exclusao de registros dependentes em tabelas relacionadas quando um registro pai € excluido.

Essa clausula garante a consisténcia dos dados, removendo automaticamente registros
relacionados em cascata.

CREATE TABLE aluno (

pk_aluno int PRIMARY KEY AUTO INCREMENT NOT NULL,
nome aluno varchar (100) NOT NULL,

fk turma int NOT NULL,

FOREIGN KEY (fk_turma) REFERENCES turma(pk_turma)
ON DELETE CASCADE

) ;

23

Excluir Tabela ou Banco de Dados

DROP TABLE aluno;
DROP DATABASE escola;

Alterar Tabela

Excluir Coluna:
ALTER TABLE aluno
DROP COLUMN emaill aluno;

Adicionar Coluna:
ALTER TABLE aluno
ADD (telefone aluno VARCHAR(100)) ;

25

Alterar Tabela

Renomear coluna:

ALTER TABLE aluno
CHANGE cpf aluno CPF aluno VARCHAR(100);

26

Alterar Tabela

Alterar o tipo da coluna:

ALTER TABLE aluno
MODIFY COLUMN cpf aluno VARCHAR(100);

27

Alterar Tabela

Excluir coluna:

ALTER TABLE aluno
DROP COLUMN cpf aluno;

28

Excluir elementos da tabela

TRUNCATE aluno;

Diferenca entre DROP e TRUNCATE:
e TRUNCATE:

o exclui registros.
e DROP:

o Exclui toda estrutura da tabela.

29

Comentario

Unica linha:

-—- DROP TABLE aluno;

Multiplas linhas:

/* CREATE TABLE aluno (
nome VARCHAR(100)

)
*/

30

Renomear

e Renomear tabela:
ALTER TABLE aluno
RENAME TO estudante;

31

Alterar o auto incremento

e O auto incremento permite que um identificador
unico seja gerado quando um novo registro €
inserido em uma tabela de forma automatica.

e Redefinir auto incremento:

ALTER TABLE aluno
AUTO INCREMENT = 1; 3

DML - Data Manipulation
Language

DML - Data Manipulation Language

CRUD

create read update delete

@ © / o

DML - Data Manipulation Language

INSERT
UPDATE
DELETE

35

INSERIR REGISTROS

INSERT INTO nome tabela
VALUES (“valor”, "valor”)

INSERT INTO jogador

(colunal, coluna?2)
VALUES (“Boby”, 18)

36

INSERIR REGISTROS - inserir data

INSERT INTO aluno (nome aluno,data nascimento _aluno, idade aluno,

horario entrada aluno, mensalidade aluno, eh bolsista aluno)

VALUES
('Lucy', 'lucy@outlook.com', STR TO DATE('01/10/2005', '&d/sm/%Y'),

18, STR TO DATE('07:00','$H:%i'), 1129.90, 0),

37

INSERIR REGISTROS - formatacao

e DATE: data
o STR_TO_DATE('16/10/2023','%d/%m/%Y")
e TIME: horario
o STR_TO_DATE('07:35', '%h:%i"),
e DATETIME: data e horario
o STR_TO_DATE('16/10/2023 07:36', '%d/%m/%Y %H:%i"),
e YEAR:ano 38

INSERIR REGISTROS - multiplos registros

INSERT INTO aluno (nome aluno,data nascimento _aluno, idade aluno)
VALUES

('Lucy', 'lucy@outlook.com',6 18),

('dJohn', 'john@gmail.com',6 25),

('Maria', 'maria@yahoo.com',6 23);

39

ATUALIZAR REGISTRO

UPDATE nome tabela
SET nome campol = “valor”

INCORRETO! Alteracao de

todos os registros

UPDATE jogador
SET nome = “Ane”

40

ATUALIZAR REGISTRO

UPDATE nome tabela
SET nome campoZ = “valor”
WHERE nome campol = “valor”

UPDATE jogador
SET nome = “Ane”
WHERE l d: :I_ 4

EXCLUIR REGISTRO

DELETE FROM nome tabela
WHERE nome campoZ = “valor”

DELETE FROM jogador
WHERE 1d = 1

42

DQL - Data Query Language

DQL - Data Query Language

SELECT
WHERE

CONSULTAR REGISTRO

SELECT * FROM nome tabela

SELECT nome campol,nome campo?Z
FROM nome tabela

45

CONSULTAR REGISTRO

SELECT nome, 1dade

FROM jogador

ldade

46

CONSULTAR REGISTRO

SELECT 1d, nome
FROM jogador
WHERE 1dade > 18

47

Operadores

Operadores légicos:

e AND:
e OR
e NOT

Operadores de comparacao:

SELECT nome FROM jogador

WHERE i1dade >= 16 AND idade = < 20;

SELECT nome FROM jogador

WHERE 1d jogo= 2 OR 1id jogo= 3;

48

FUNCOES

Funcoes

e COUNT(): Retorna o total de linhas.

e AVG(): Retorna a média de uma
coluna.

e MIN(): Retorna o registro de menor
valor de uma coluna.

e MAX(): Retorna o registro de maior.

Quantos jogadores sao cadastrados?
SELECT COUNT (id) FROM jogador;
Qual a média de idade dos jogadores?

SELECT AVG
jogador;

(idade) FROM

Qual idade maxima dos jogadores?
SELECT MAX (idade) FROM jogador;
Qual idade minima dos jogadores?

SELECT MIN (idade) FROM jogador;

50

ORDER BY(): Ordena os registros.

Jogadores ordenados pela idade em
ordem crescente

SELECT nome FROM Jogador
ORDER BY idade;

Jogadores ordenados pela idade em
ordem decrescente

SELECT nome FROM Jogador
ORDER BY idade DESC;

51

GROUP BY(): agrupa os registros.

Jogadores agrupados pelo id do jogo (assim todos os que
tiverem o mesmo id de jogo aparecem na mesma linha)

SELECT nome FROM jogador GROUP BY id jogo

Podemos usar fungdo COUNT() para contar quantos
jogadores compraram cada jogo.

SELECT COUNT (id jogo) FROM jogador GROUP BY
id jogo

52

STR_TO_DATE(): Esta funcao
permite formatar uma string em
formatos como datetime, date ou
time.

INSERT INTO (data jogador jogo) VALUES
(STR_TO DATE(‘10/05/2020",” $d/$m/%Y"));

INSERT INTO (data hora jogador jogo) VALUES
(STR_TO DATE ('10/05/2020 10:35",/ %d/%$m/%Y
sh:%1’));

INSERT INTO (hora jogador jogo) VALUES
(STR_TO DATE ('10:35’,"%h:%1i’));

53

Funcoes

FLOOR(): arredonda para baixo. SELECT FLOOR (AVG (idade jogador)) FROM JOGADOR;
CEIL(): arredonda para cima.

SELECT CEIL (AVG(idade jogador)) FROM JOGADOR;
e TRUNCATE(): trunca o valor -~

considerando apenas a SELECT TRUNCATE (AVG (idade_j ogador), 1) FROM
. JOGADOR;
quantidade de casas
informadas. SELECT ROUND (AVG (idade jogador),1) FROM
JOGADOR;

e ROUND():arredonda
considerando o numero de
casas informadas.

54

NOVO EXEMPLO

1 DESIV1 2022
2 DESIN1 2023
3 DESI M2 2021

4 DESIM1 2020,

55

DDL tabela turma

CREATE TABLE turma (

pk turma int NOT NULL,

nome turma wvarchar (100) NOT
NULL,

ano_turma int NOT NULL

) ;

56

NOVO EXEMPLO

sobrenome data_nascimento_ |idade_alu |ano_ingresso |ano_egr
nome_aluno telefone_aluno
_aluno aluno _aluno aluno

1 Jodo

2 Maria

3 Pedro
4 Ana

5 Carlos

6 Mariana

7 Fernando

8 Amanda

9 Lucas
10 Juliana
11 Marcos
12 Larissa
13 Rafael
14 Camila
15 Gustavo
16 Laura
17 Henrique
18 Isabela
19 Roberto
20 Luana
23 Luiza

Silva
Santos
Lima
Oliveira
Martins
Pereira
Gomes
Rodrigues
Costa
Almeida
Rocha
Ferreira
Carvalho
Mendes
Sousa
Pinto
Barros
Fernandes
Cavalcanti
Gongalves
Pereira

12345678910
98765432110
45678912310
65432198710
78912345610
32165498710
98712345610
45678932110
78932165410
65498732110
98732165410
32198765410
78965432110
45612378910
78945612310
32178945610
98745678910
45678998710
78998745610
32145678910
12345678911

4799999999
4788888888
4777777777
4766666666
4755555555
47444444404
4733333333
4722222222
4711111111
4700000000
4799990000
4788881111
4777772222
4766663333
4755554444
4744445555
4733336666
4722227777
4711118888
4700009999
4134343434 NULL

N W E N WRENWRBRNWRENWRSRNWRSNPRS

01/01/1990
15/03/1992
20/07/1991
05/12/1993
18/11/1990
10/02/1992
25/06/1994
08/09/1991
03/04/1993
12/08/1990
06/05/1992
28/10/1991
14/07/1993
17/12/1990
23/01/1992
06/08/1994
30/11/1991
15/06/1993
09/09/1990
24/04/1992
10/07/2020

31
32
28
33
31
27
32
29
33
31
32
28
33
31
27
32
29
33
31
22

2010
2011
2009
2012
2010
2011
2013
2009
2012
2010
2011
2009
2012
2010
2011
2013
2009
2012
2010
2011
2020

2014
2016
2013
2017
2014
2016
2018
2013
2017
2014
2016
2013
2017
2014
2016
2018
2013
2017
2014
2016
2023,

57

DDL tabela estudante

CREATE TABLE estudante (
pk aluno int NOT NULL PRIMARY KEY AUTO_INCREMENT |,
nome aluno varchar (100) NOT NULL,
sobrenome aluno varchar (100) DEFAULT NULL,
cpf aluno varchar (11) DEFAULT NULL,
telefone aluno varchar(l11l) DEFAULT NULL,
fk turma int DEFAULT NULL,
data nascimento aluno date DEFAULT NULL,
idade aluno int NOT NULL,
ano_ingresso_aluno int NOT NULL,
ano_egresso_aluno int NOT NULL

FOREIGN KEY fk turma REFERENCES turma (pk turma)
58

GROUP BY:

Seleciona estudantes da turma 2.

Seleciona estudantes da turma 2
ou da turma 3 e os agrupa por

turma.

Seleciona estudantes da turma
ou turma 3 e gs-egfupa por turma e
a quando estudante tem por

turma.

SELECT * FROM estudante WHERE
fk turma=2;

SELECT * FROM estudante WHERE
fk turma=2 OR fk turma=3 GROUP BY
fk turma;

SELECT count (pk aluno) FROM
estudante WHERE fk turma=2 OR
fk turma=3 GROUP BY fk turma;

59

INNER JOIN
JOIN/LEFT
JOIN/RIGHT

JOIN/ INNER JOIN

Juncao que combina registros de duas ou
mais tabelas

SELECT * FROM estudante
JOIN turma;

SELECT * FROM estudante
INNER JOIN turma;

61

INNER JOIN
condicao: ON

Retorna apenas os registros que tém
correspondéncia nas duas tabelas
envolvidas na juncao.

Combina as linhas com base em uma
condicao de correspondéncia
especificada na clausula ON.

Se nao houver correspemd®ncia, as linhas
nao serao jnskrfdas no resultado.

Nao traz valores nulos.

SELECT * FROM estudante
INNER JOIN turma

ON estudante.fk turma =
turma.pk turma

62

LEFT JO'N SELECT * FROM estudante

LEFT JOIN turma

ON estudante.fk turma =
Retorna todos os registros da tabela a turma.pk turma

esquerda da juncado (tabela esquerda) e os
registros correspondentes da tabela a
direita da juncao (tabela direita).

Se nao houver correspondénci
direita, serao retornadee=valores NULL.

RIGHT JOIN SELECT * FROM estudante

RIGHT JOIN turma
ON estudante.fk turma =
turma.pk turma

Retorna todos os registros da tabela a
direita da juncdo (tabela direita) e os
registros correspondentes da tabela a
esquerda da juncao (tabela esquerda).

Se nao houver gSpondéncia na tabela
petd, serao retornados valores NULL.

UNION

UNION

Combina os resultados de duas
consultas diferentes realizadas nas
tabelas.

SELECT E.nome_aluno, T.nome turma
FROM estudante AS E

LEFT JOIN turma AS T ON E.fk turma =
T.pk turma

UNION

SELECT E.nome_aluno, T.nome turma
FROM estudante AS E

RIGHT JOIN turma AS T ON E.fk turma =
T.pk_turma;

CONSULTAS
ANINHADAS

Uma consulta aninhada, também conhecida

como subconsulta (subselect), é uma consulta

SQL que é incorporada dentro de outra consulta
SQL. Ela permite usar o resultado de uma
consulta interna como parte da condicdo ou da

selecdo na consulta externa.

Em uma consulta aninhada, a consulta interna

executada primeiro e seu resultgde=é

consulta externa._# consulta interna
gffa dentro da clausula FROM, WHERE,

ou SELECT da consulta externa.

SELECT nome

FROM estudante

WHERE pk_aluno IN (SELECT
pk aluno FROM estudante
WHERE idade = 32);

68

VIEW

VIEW:

Uma view (visdo) em um banco de
dados é uma representacao virtual de
uma tabela ou de uma combinacao

de tabelas. Ela é criada a partir de
uma consulta SQL e pode ser usada
como uma tabela normal
consulta, mas nao armazepe
fisicamente.

CREATE VIEW
viewAlunosEntre30e32 AS

SELECT E.nome aluno,
E.ldade aluno,

T.nome turma FROM
estudante AS E

JOIN turma AS T

ON E.fk turma = T.pk turma
WHERE E.idade aluno >= 30
AND E.idade aluno <= 32
ORDER BY E.nome aluno;

70

Por que view?

Reutilizacao: As views sao objetos permanentes, o que é altamente vantajoso do
ponto de vista produtivo, ja que podem ser acessadas simultaneamente por
varios usuarios.

Seguranca: As views possibilitam ocultar colunas especificas de uma tabela. Ao
criar uma view com as colunas que desejamos exibir, podemos disponibiliza-la

aos usuarios, fornecendo maior controle sobre a exposicao de dados sensiveis.

71

Por que view?

Simplificacdo do coédigo: As views nos permitem criar um codigo de
programagao mais conciso, pois podem conter uma consulta SELECT complexa.
Assim, ao criar views para os programadores, poupamos seu esforco de criar
consultas SELECT, resultando em maior produtividade para a equipe de
desenvolvimento.

Desempenho: Em determinados casos, as visualizacdes podem aprimorar o
desempenho do sistema. Por exemplo, é possivel criar uma visualizacao que
armazene o resultado de uma consulta complexa e atualiza-la periodicamente
em segundo plano. Dessa forma, evitamos executar a consulta a cada acesso
aos dados, o que contribui para a eficiéncia geral do sistema.

72

TRIGGERS

Trigger:

Uma trigger (gatilho) em um banco de dados é
um objeto associado a uma tabela que é
acionado automaticamente quando ocorre um
evento especifico, como inserg¢ao, atualizagao
ou exclusdao de dados nessa tabela. Ela

consiste em um conjunto de instrugées SQL
que sao executadas em resposta ao evento
acionador.

CREATE TRIGGER
trg UpdatelLastModified
BEFORE UPDATE ON clientes
FOR EACH ROW
BEGIN

SET
NEW.ultima atualizacao =
CURRENT_T IMESTAMP;
END

74

STORED
PROCEDURE

Stored Procedure:

Uma stored procedure, € um objeto do banco
de dados que contém um conjunto de

instru¢cdes SQL predefinidas. Ela é armazenada
no banco de dados e pode ser chamada e
executada posteriormente.

CREATE PROCEDURE
getAnimalsByType (
IN p tipo VARCHAR(50)
)
BEGIN
SELECT
id,
nome,
tipo,
idade,
peso
FROM animal
WHERE tipo = p tipo
ORDER BY nome;
END

76

DCL - Data Control
Language

DQL - Data Control Language

CREATE USER
DROP USER
CREATE ROLE
DROP ROLE
ALTER USER
ALTER ROLE
GRANT
REVOKE

78

Controle os privilégios
e permissoes de

acesso em um banco
de dados.

Criar usuario.

Excluir usuario.

Cria papel.

Excluir papel.

Adici F permissoes.
Remover permissoes.
Atribuir permissao geral.

CREATE USER fulano;
CREATE USER ciclano
IDENTIFIED BY “1234"7;

CREATE ROLE adminstrador;
CREATE ROLE usuario;

GRANT SELECT, INSERT, UPDATE
ON turma TO administrador;

REVOKE SELECT, INSERT, UPDATE
ON estudante FROM usuario;

GRANT ALL PRIVILEGES ON
clinica veterinaria.* TO
administrador;

79

DCL - Data Transaction
Language

Usados para garantir a
consisténcia dos dados em um
banco de dados, permitindo que
as alteracoes sejam tratadas de
forma controlada e revertidas se
necessario.

¢ START TRANSACTION:
Inicia uma sequéncia de
comandos.
COMMIT:

ROLLBACK,
aso ocorra algum erro,
reverta as alteracdes parciais.

START TRANSACTION;
transacao

-— Atualiza o saldo
cliente 1

UPDATE clientes SET
WHERE id = 1;

-— Atualiza o saldo
cliente 2

UPDATE clientes SET
WHERE id = 2;
COMMIT; —-- Confirma

-— Se ocorrer algum

—— Inicia a

da conta do

saldo = saldo - 100

da conta do

saldo = saldo + 100

a transacao

erro ou problema,

podemos executar ROLLBACK para desfazer

as alteracodes:

—-— ROLLBACK; -- Desfaz a transacdo e
restaura o estado anterior

81

REFERENCIAS:

DATE, Christopher J. Introducao a sistemas de bancos de dados. Elsevier
Brasil, 2004.

MARIADB. Documentacdo MariaDB. MariaDB Knowledge Base, 2026.
Disponivel em: https://mariadb.com/kb/pt-br/documentacao-mariadb/.
Acesso em: 04 fev. 2026

82

https://mariadb.com/kb/pt-br/documentacao-mariadb/?utm_source=chatgpt.com

Esses slides estao protegidos por uma licenga Creative Commons.

HSG)

https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode

SQL (Standard Query Language)

% Banco de Dados

