

Marisangila Alves, MSc

marisangila.alves@catolicasc.org.br marisangila.com.br

Católica de Santa Catarina

2025/2

Estrutura de Dados

Estrutura de Dados Complexidade de Algoritmos

Sumário

- 1 Introdução
- 2 Algoritmos
- 3 Análise de Algoritmos
- 4 Definição

- 5 Como Analisar
- 6 Comportamento Assintótico
- 7 Notação Big-O
- 8 Exemplos

Nota:

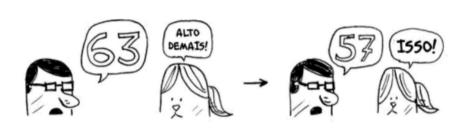
Pense em um número entre 1 e 100!

Uma tentativa ruim de acertar o número.

(Bhargava, 2016)

(Bhargava, 2016)

(Bhargava, 2016)



(Bhargava, 2016)

Algoritmos

Como resolver um problema?

- Descrever o problema de forma clara e precisa;
- Escrever o algoritmo correspondente;
- Sequência de instruções simples e objetiva.

Vários algoritmos para o mesmo problema:

- Algoritmos diferem na forma como utilizam os recursos do computador.
- Principais recursos que influenciam:
 - >> Tempo de execução
 - >> Uso de memória

Um algoritmo eficiente resolve o problema corretamente usando menos recursos.

Análise de Algoritmos

Complexidade

Análise de Algoritmos

- > Área de pesquisa cujo foco são os algoritmos;
- > Busca responder a seguinte pergunta: podemos fazer um algoritmo mais eficiente?
- Algoritmos diferentes, mas capazes de resolver o mesmo problema, não necessariamente o fazem com a mesma eficiência.

Definição

Definição

A **complexidade de um algoritmo** mede o custo computacional (em tempo e/ou espaço) necessário para executar um algoritmo em função do tamanho da entrada (n).

Complexidade

Por que é importante?

- > Permite comparar algoritmos com base em sua eficiência.
- > Aiuda a prever desempenho para grandes volumes de dados.
- > Suporta decisões de projeto em sistemas de alto desempenho.
- > Auxilia na otimização de programas.

Complexidade

- Análise empírica;
 - >> Executamos o algoritmo e medimos seu tempo de execução.
- Análise matemática.

```
#include <stdio.h>
#include <stdib.h>
#include <time.h>
int main(void){
    clock_t inicio, fim;
    inicio = clock();
    algoritmo_analisado();
    fim = clock();
    tempo = (fim - inicio) * 1000/ CLOCKS_PER_SEC;
    printf("Tempo: %lu milissegundos!\n", tempo);
}
```

Código 1: Análise impírica.

Empírica vs Matemática I

Análise Empírica Vantagens:

- Avalia desempenho em uma configuração específica de computador/linguagem:
- Considera custos não aparentes (ex.: alocação de memória);
- > Permite comparar computadores e linguagens.

Desvantagens:

- Necessidade de implementar o algoritmo;
- > Depende da habilidade do programador;
- Resultados podem ser influenciados por hardware e software:
- Depende da natureza dos dados (reais, aleatórios, perversos).

Análise Matemática Vantagens:

- > Estudo formal da ideia do algoritmo;
- Usa simplificações e computador idealizado;
- Ignora detalhes de hardware, linguagem e CPU;
- Permite entender o comportamento à medida que os dados crescem.

Desvantagens:

- Pode n\u00e3o refletir o desempenho real em hardware espec\u00edfico;
- Não considera eventos de software ou implementação.

- > Complexidade de Tempo: mede quantas operações são realizadas.
- > Complexidade de Espaço: mede o uso de memória durante a execução.

Exemplo

Um algoritmo pode ser rápido (O(n)), mas usar muita memória $(O(n^2))$.

Melhor Caso

Situação mais favorável, onde o algoritmo realiza o menor número de operações.

Pior Caso

Situação mais desfavorável, onde o algoritmo realiza o maior número de operações.

Caso Médio

Situação típica ou esperada, considerando a distribuição das entradas.

Como Analisar

 $\begin{tabular}{lll} \bf Algoritmo \ exemplo: \ encontra \ o \ maior \ valor \ em \ um \ array \ A \ com \ n \ elementos \ e \ armazena \ em \ M \end{tabular}$

```
int M = A[0];
for(int i = 0; i < n; i++){
    if(A[i] >= M){
        M = A[i];
    }
}
```

Código 2: Exemplo: encontra o maior valor de um vetor (array).

Instruções simples:

- > Atribuição de valor a uma variável
- Acesso a um elemento do array
- > Comparação de valores
- Incremento
- Operações aritméticas básicas

Notas importantes:

- > Todas as instruções simples têm o mesmo custo
- > Comandos de seleção (if) têm custo zero

Custo da inicialização de M: 1 instrução (atribuição)

Custo do laço for inicial: 2 instruções (uma atribuição + uma comparação)

Custo do laço for em execução: 2n instruções (incremento + comparação, executadas n vezes)

Custo total antes do conteúdo do laço: 3+2n instruções

Considerando comandos dentro do for:

- ▶ if: 1 instrução sempre executada
- > atribuição: 1 instrução, depende do if

Pior caso: array em ordem crescente

- ightharpoonup Valor de M sempre substituído
- ightharpoonup Total de instruções adicionais: 2n

Complexidade

Função de custo no pior caso:

$$f(n) = 3 + 2n + 2n = 4n + 3$$

```
int M = A[0];
for(int i = 0; i < n; i++){}
    if(A[i] >= M){
        M = A[i]:
```

Código 3: Exemplo: encontra o maior valor de um vetor (array).

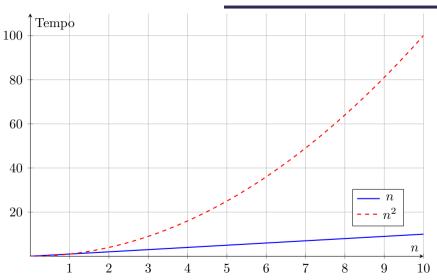
Exemplo para matriz A de tamanho $n \times n$:

$$f(n) = 1 + 2 + 2n + n(2 + 2n + 2n) = 3 + 4n + 4n^{2}$$

```
int M = A[0][0];
for(int i = 0; i < n; i++){}
    for(int j = 0; j < n; j++){
        if(A[j] >= M){
            M = A[j];
```

Código 4: Exemplo: encontra o maior valor de uma matriz.

Como Analisar IX



Comportamento Assintótico

Comportamento Assintótico I

- > O custo do algoritmo pode ser representado por uma função de complexidade
- ightharpoonup Exemplo: f(n) = 4n + 3
- ightharpoonup Nos dá uma ideia do custo de execução para um problema de tamanho n
- > Podemos também analisar o espaço gasto pelo algoritmo

Comportamento Assintótico I

- Nem todos os termos da função são importantes para avaliar o custo
- Devemos manter apenas os termos que crescem mais rápido quando n aumenta
- Termos constantes ou de crescimento lento podem ser descartados

Exemplo de Simplificação I

- **>** Função: f(n) = 4n + 3
- ightharpoonup 3 é constante e não muda com o crescimento de $n \Rightarrow$ pode ser descartada
- Multiplicadores constantes também podem ser descartados
- Assim, $f(n) = 4n \Rightarrow f(n) = n$ (análise assintótica)

Complexidade

Comportamento Assintótico I

- > O termo de maior crescimento domina a função
- > Exemplo:

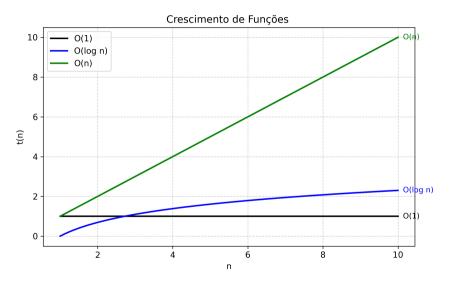
$$page q(n) = 1000n + 500 \Rightarrow O(n)$$

$$h(n) = n^2 + n + 1 \Rightarrow O(n^2)$$

Podemos ignorar termos e constantes menos relevantes

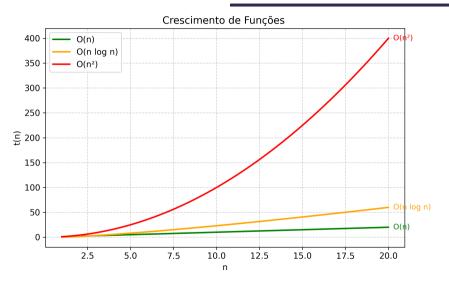
Complexidade

Comportamento Assintótico I

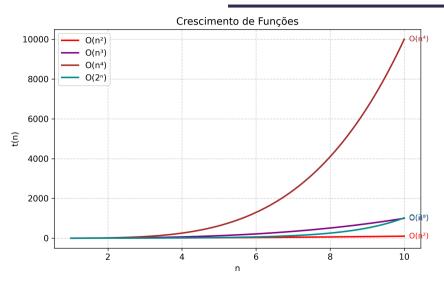


Complexidade

Comportamento Assintótico II

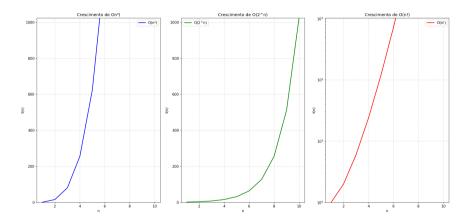


Comportamento Assintótico III



Complexidade

Comportamento Assintótico IV



Comportamento Assintótico V

- > $f(n) = 105 \Rightarrow O(1)$ > $f(n) = 15n + 2 \Rightarrow O(n)$ > $f(n) = n^2 + 5n + 2 \Rightarrow O(n^2)$
- $f(n) = 5n^3 + 200n^2 + 112 \Rightarrow O(n^3)$

Comportamento Assintótico VI

Hierarquia assintótica de funçõesDo crescimento mais lento para o mais rápido:

$$\frac{\varepsilon}{0<\varepsilon<1} < \underbrace{\log n}_{\text{logaritmo}} < \underbrace{(\log n)^k}_{\text{potência de log}} < \underbrace{n^\varepsilon}_{\text{potência fracionária}} < \underbrace{n}_{\text{linear}} < \underbrace{n^c}_{\text{polinomial com } c>1} < \underbrace{c^n}_{\text{exponencial}} < \underbrace{n!}_{\text{fatorial}} < \underbrace{n^n}_{\text{quase exponencial}}$$

ou de forma simplificada:

$$\varepsilon < 1 < \log n < (\log n)^k < n^{\varepsilon} < n < n^c < c^n < n! < n^n$$

- > Sem laço (exceto recursão): f(n) = 1
- > Um laço de 1 a n: f(n) = n
- **>** Dois laços aninhados: $f(n) = n^2$
- Três laços aninhados: $f(n) = n^3$
- > Etc.

Notação Big-O

Complexidade

- > Representa o limite superior do custo do algoritmo
- \triangleright Considera o pior caso possível para todas as entradas de tamanho n
- > Permite saber que o algoritmo não vai ultrapassar determinado custo

Complexidade

- \triangleright Podemos criar um laço interno "pior caso" sempre executando n vezes
- Função de custo aproximada: $f(n) = n^2$
- Notação grande-O: $O(n^2)$
- Indica limite superior do custo do algoritmo

Definicões

- ightharpoonup O(f(n)): Limite superior crescimento máximo (pior caso).
- $ightharpoonup \Omega(f(n))$: Limite inferior crescimento mínimo (melhor caso).
- $ightharpoonup \Theta(f(n))$: Crescimento assintótico exato (caso médio).

Exemplo

Para o algoritmo Bubble Sort:

- ightharpoonup Melhor caso: $\Omega(n)$
- ightharpoonup Pior caso: $O(n^2)$
- ightharpoonup Caso médio: $\Theta(n^2)$

Tipos Comuns de Complexidade I

Complexidade	Descrição	Exemplo	
O(1)	Constante	Acesso direto a vetor	
$O(\log n)$	Logarítmica	Busca binária	
O(n)	Linear	Busca sequencial	
$O(n \log n)$	Quase linear	Merge Sort	
$O(n^2)$	Quadrática	Bubble Sort	
$O(2^n)$	Exponencial	Força bruta em subconjuntos	
O(n!)	Fatorial	Permutações completas	

Tabela 1: Crescimento de complexidades comuns.

Exemplos

Complexidade —

Passos para Calcular a Complexidade

- Il Identifique as operações principais (atribuições, somas, comparações, etc.).
- Conte quantas vezes cada operação é executada.
- \blacksquare Expresse o total de operações como uma função de n.
- 4 Elimine constantes e mantenha o termo de maior crescimento.

Complexidade

Exemplo 1 — Código simples

```
int soma = 0; // O(1)
for (int i = 0; i < n; i++) { // repete n vezes
   soma = soma + i; // O(1) por iteração
```

Análise:

- **>** Linha 1: *O*(1)
- \blacktriangleright Loop: $n \times O(1) = O(n)$
- ➤ Total: $O(1) + O(n) \Rightarrow O(n)$

Exemplo 2 — Loop duplo

```
for (int i = 0; i < n; i++) { // O(n) for (int j = 0; j < n; j++) { // O(n) por iteração de i soma++; // O(1) }
```

Análise: $n \times n \times O(1) = O(n^2)$

Exemplo 3 — Recursão simples

Exemplo 4 — Fibonacci Recursivo

```
int fibonacci(int n) {
   if (n <= 0)
      return 0;
   if (n == 1)
      return 1;
   return fibonacci(n - 1) + fibonacci(n - 2); // chamadas recursivas
}

Análise: T(n) = T(n-1) + T(n-2) + O(1) \implies O(2^n)
```

Exemplo 5 — Torre de Hanoi Recursiva

```
void hanoi(int n, char origem, char destino, char auxiliar) {
   if (n == 0) return;
   hanoi(n - 1, origem, auxiliar, destino);
   printf("Mover disco %d de %c para %c\n", n, origem, destino);
   hanoi(n - 1, auxiliar, destino, origem);
}
```

Análise: $T(n) = 2 \cdot T(n-1) + O(1) \implies O(2^n)$

Regra geral

- ▶ Ignore constantes: $3n + 10 \Rightarrow O(n)$
- ▶ Ignore termos menores: $n^2 + n \Rightarrow O(n^2)$

Complexidade dos Algoritmos de Ordenação I

Algoritmo	Melhor Caso	Médio	Pior Caso	Estável
Bubble Sort	O(n)	$O(n^2)$	$O(n^2)$	Sim
Insertion Sort	O(n)	$O(n^2)$	$O(n^2)$	Sim
Selection Sort	$O(n^2)$	$O(n^2)$	$O(n^2)$	Não
Merge Sort	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$	Sim
Quick Sort	$O(n \log n)$	$O(n \log n)$	$O(n^2)$	Não
Heap Sort	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$	Não

Tabela 2: Comparativo de complexidades dos algoritmos de ordenação.

Leitura Recomendada

(CELES; CERQUEIRA; RANGEL, 2004) - Capítulo 11

Leitura Extra Recomendada

(Bhargava, 2016)

CELES, Waldemar; CERQUEIRA, Renato; RANGEL, José Lucas. Introdução a estruturas de dados: com técnicas de programação em C. Rio de Janeiro: Elsevier, 2004.

DEITEL, Paul; DEITEL, Harvey. **C: Como Programar**. 6. ed. São Paulo: Pearson Universidades, 2011.

SCHILDT, Herbert. **C Completo e Total: O Guia Definitivo para Programação em C.** 3. ed. São Paulo: Makron Books, 1996. ISBN 978-8534606928.

BHARGAVA, Aditya. **Entendendo Algoritmos: Um Guia Ilustrado para Programadores e Outros Curiosos**. 1. ed. São Paulo, Brasil: Novatec, 2016. ISBN 978-85-7522-367-8.

CORMEN, Thomas H. et al. Algoritmos: Teoria e Prática. 4ª. Rio de Janeiro: LTC, 2024. p. 912. ISBN 9788595159907.

Estes slides estão protegidos por uma licença Creative Commons

Este modelo foi adaptado de Maxime Chupin.

Marisangila Alves, MSc

marisangila.alves@catolicasc.org.br marisangila.com.br

Católica de Santa Catarina

2025/2

Estrutura de Dados

Estrutura de Dados Complexidade de Algoritmos