.’ Marisangila Alves, MSc
.’ marisangila.alves@catolicasc.org.br

marisangila.com.br

Catélica SC Catélica de Santa Catarina

Centro Universitario

2025/2

Programacao Orientada a Objetos
POO

marisangila.com.br

Histéria
Definicdo
Classe
Propriedades
Métodos

A Objeto

Construtor

B Encapsulamento
El Heranca
Polimorfismo
Abstracdo

Tépicos Avancados

Sumario

Historia

POO

s
)
L
3
<
)
N
o
1Y
©)
|

Histéria da Programacao Orientada a Objetos |

A Programacdo Orientada a Objetos (POO) surgiu como resposta a necessidade de
criar sistemas mais modulares, reutilizaveis e faceis de manter.

> 1960s: Linguagem Simula introduz o conceito de classes e objetos (para
simulacdes de sistemas complexos).

> 1970s: Surge Smalltalk, que populariza o paradigma totalmente orientado a
objetos.

> 1980s: Linguagens como C++ unem programacdo estruturada e POO.

3/67

Histéria da Programacao Orientada a Objetos Il

> 1990s: Java consolida a POO no desenvolvimento empresarial.

> 2000s em diante: POO se torna padrdo em linguagens como C#, Python, csharp,
entre outras.

s
)
L
3
<
)
N
o
1Y
©)
|
o
o
o

4/67

Histéria da Programacao Orientada a Objetos IlI

A POO n3o substituiu outros paradigmas, mas se tornou o mais utilizado em aplica-
cOes de grande porte.

s
)
L
3
<
)
N
o
1Y
©

POO —

5/67

Definicao

POO

s
)
L
3
<
)
N
o
1Y
©)
|

O que é Programacao Orientada a Objetos? |

A Programacdo Orientada a Objetos (POO) é um paradigma de programacdo que
organiza o software em objetos, que combinam dados (atributos) e comportamentos
(métodos).

> Facilita a manutencao e o reuso do cédigo.
> Reflete conceitos do mundo real no software.

> Usa principios como abstracao, encapsulamento, heranca e polimorfismo.

7/67

s
)
L
3
<
)
N
o
1Y
©)

POO vs Programacao Estruturada

Programacao Estruturada e POO tém abordagens diferentes para resolver problemas:

> Estruturada:
» O foco estd em funcoes e procedimentos.
» Os dados sdo separados das funcdes.
»> Mais adequada para programas pequenos e simples.

> Orientada a Objetos:

» O foco estd em objetos, que relinem dados e comportamentos.
» Os dados s3o encapsulados nas classes.
» Mais adequada para sistemas grandes e complexos.

8/67

s
)
L
3
<
)
N
o
1Y
©)
|
o
o
o

POO vs Programacao Estruturada Il

Outros paradguimas:
> Estruturado: usa controle de fluxo estruturado (ex: Pascal, C).

> Orientado a Objetos (POO): organiza cédigo em classes e objetos, com
encapsulamento, heranca e polimorfismo (ex: Java, C++, PHP, C#, Python,
Swift!, Kotlin?).
> Funcional: enfatiza funcdes puras e imutabilidade, evitando efeitos colaterais (ex:
Haskell, Elixir, JavaScript).
34

9/67

POO vs Programacao Estruturada Il

Atencao!

A POO n3o substitui a programacdo estruturada: ela a complementa, forne-
cendo novas ferramentas para organizar o cédigo.

!Swift é muito usado em desenvolvimento mobile i0S

2Kotlin é usado para Android

3Programacio orientada a eventos é muito utilizada em interfaces graficas, onde a execuc3o do cédigo
depende de ac¢bes do usuario como cliques e digitacdo.

*Muitas linguagens modernas sio multiparadigma, ou seja, suportam mais de um paradigma, como
Python (estruturado, OO, funcional) e JavaScript (funcional, OO, orientada a eventos). 10/67

s
%)
L
3
<
)
I
o
I
(©)

Conceitos Fundamentais da POO |

> Classe: o molde que define atributos e métodos.
> Objeto: instancia concreta de uma classe.

> Encapsulamento: protecdo dos dados internos, controlando o acesso com
modificadores (public, private, protected).

> Heranca: uma classe pode herdar atributos e métodos de outra.
> Polimorfismo: diferentes classes podem redefinir métodos de formas distintas.

> Abstracao: capacidade de representar conceitos do mundo real em modelos
simplificados.

s
)
L
3
<
)
N
o
1Y
©)

11/67

Classe

Classe

Classe:

E um modelo ou molde que define a estrutura e o
comportamento de objetos em programacao orientada a
objetos.

s
)
L
3
<
)
N
o
1Y
©

POO —

13/67

Propriedades

s
)
L
3
<
)
N
o
1Y
©)

Propriedades (Atributos) |

As propriedades — também chamadas de atributos — representam as caracteristicas

ou dados que descrevem um objeto.
> S3o varidveis declaradas dentro da classe.
> Cada objeto possui sua propria copia das propriedades.

> Exemplos: nome, idade, saldo, cor.

Exemplo:

Na classe Pessoa, atributos poderiam ser: nome, idade, cpf.

15/67

Propriedades (Atributos) Il

Mlllclass Pessoa

2 |

3

4 public string nome;
5 public int idade;

6 public string cpf;

Cédigo 1: Classe com atributos em C#

s
%)
L
3
<
)
I
o
I
(©)
|
o
o
o

16/67

Métodos

Métodos |

Os métodos s3o funcdoes definidas dentro de uma classe que descrevem o comportamento
do objeto.

> Podem manipular ou acessar atributos.
> Representam acGes que o objeto pode realizar.

> Exemplos: apresentar (), depositar(), calcularIdade().

Exemplo:
Na classe Pessoa, um método poderia ser apresentar (), que imprime o nome e a idade.

s
%)
L
3
<
)
I
o
I
(©)

18/67

s
%)
L
3
<
10
I
o
«
©

© 00 N O U W N =

=R e e
w N = O

Métodos |1

using System;

class Pessoa

{

public string nome;
public int idade;

public void apresentar()

{

Console.WriteLine($"01la, meu nome & {this.nome} e tenho {this.idade} anos.");

}

Cédigo 2: Classe com método em C#

19/67

s
)
L
3
<
)
N
o
1Y
©

Classe vs Objeto |

E comum confundir classe com objeto. Mas eles s3o conceitos distintos:
> Classe: é o molde, o projeto ou a receita.

> Objeto: é a instancia concreta criada a partir da classe.

Uma classe define o que um objeto pode ter e fazer. Um objeto é um exemplo
real daquela definicdo.

Exemplo:

A classe Carro pode ter atributos como cor e modelo, e métodos como acelerar() e
frear(). O objeto seria um carro especifico, por exemplo: um Fiat Uno vermelho de
2010.

21/67

© 2025 ALVES, M.

POO

using System;

class Carro

{
public string modelo;
public string cor;

public void acelerar()
{

Console.WriteLine("0 carro estad acelerando!");

class Program
{
static void Main()
{
Carro meuCarro = new Carro();
meuCarro.modelo = "Fiat Uno";

Classe vs Objeto Il

Classe vs Objeto Il

meuCarro.cor = "Vermelho";

Console.WriteLine($"Modelo: {meuCarro.modelo}, Cor: {meuCarro.cor}");

meuCarro.acelerar();

Cédigo 3: Diferenca entre classe e objeto

s
%)
L
3
<
10
I
o
«
©

23/67

Construtor

Construtores em Programacao Orientada a Objetos |

Construtor é um método especial de uma classe que é chamado automaticamente sempre
que um objeto é criado. Ele é usado para inicializar propriedades do objeto e garantir
que ele comece em um estado valido.

> No C#, o construtor é definido com um método que possui 0 mesmo nome da
classe.

> Pode receber parametros para inicializar atributos do objeto.

> Pode conter regras de validacdo ou configuracdo inicial do objeto.

Um construtor evita que o usudrio da classe tenha que chamar métodos de inicializac3o
manualmente, garantindo consisténcia e seguranca no estado do objeto.

s
)
L
3
<
)
N
o
1Y
©)

25/67

© 2025 ALVES, M.

POO

1
2
3
4
5
7

P e e e e e e e
© 0 N O U A WD O O

Construtores em Programacao Orientada a Objetos Il

O exemplo a seguir mostra uma classe Produto com construtor para inicializar nome e
preco:

using System;

class Produto

{
public string nome;
public double preco;

public Produto(string nome, double preco)
{
this.nome = nome;
this.preco = preco;
Console.WriteLine($"Produto '{this.nome}' criado com preco R$ {this.preco}.");

class Programa

{

Construtores em Programacao Orientada a Objetos IlI

static void Main()
{
Produto produtol new Produto("Caneta", 1.5);

Produto produto2 new Produto("Caderno", 12.0);

Cédigo 4: Exemplo de construtor em C+#

s
%)
L
3
<
10
I
o
«
©
|

POO

27/67

Encapsulamento

Encapsulamento |

Encapsulamento significa proteger os dados de um objeto, restringindo o acesso direto
aos atributos e fornecendo métodos de acesso (getters e setters).

> Usa modificadores: public, private, protected.

> Evita alteracGes indevidas nos atributos.

s
)
L
3
<
)
N
o
1Y
©)

29/67

POO — © 2025 ALVES, M.

using System;

class ContaBancaria

{

private double saldo;

public ContaBancaria(double saldoInicial)

{

this.saldo = saldoInicial;

}

public double getSaldo()
{

Encapsulamento ||

POO — © 2025 ALVES, M.

return this.saldo;

public void depositar(double valor)
{

if (valor > 0)

{

this.saldo += valor,;

class Program

{

Encapsulamento 1|

Encapsulamento IV

static void Main()

{
ContaBancaria conta = new ContaBancaria(100);
conta.depositar (50) ;

Console.WriteLine("Saldo atual: " + conta.getSaldo);

Cédigo 5: Encapsulamento em C#

s
%)
L
3
<
)
I
o
I
(©)
|
o
o
o

32/67

Heranca

Heranca |

Heranca permite que uma classe (filha) reutilize atributos e métodos de outra (pai).
> Promove reuso de cédigo.

> Facilita extensibilidade.

s
%)
L
3
<
)
I
o
I
(©)

34/67

© 2025 ALVES, M.

POO

using System;

class Pessoa

public string nome;

public Pessoa(string nome)
{

this.nome = nome;

public virtual void apresentar()

{

Console.WriteLine($"01la, eu sou {this.nomel}");

class Aluno : Pessoa
{

public string curso;

Heranca |l

© 2025 ALVES, M.

POO

public Aluno(string nome, string curso) : base(nome)
{

this.curso = curso;

public override void apresentar()

{

Console.WriteLine($"Sou {this.nome}, aluno de {this.cursol}");
+

class Program
{
static void Main()
{
Aluno aluno = new Aluno("Jo&o", "Computag&o");
aluno.apresentar() ;

Heranca

Heranca IV

Cédigo 6: Heranca em C#

s
)
L
3
<
)
N
o
1Y
©)
|
o
o
o

37/67

Polimorfismo

Polimorfismo |

Polimorfismo significa "muitas formas”. Permite que diferentes classes implementem o
mesmo método de maneiras distintas.

> Métodos com o mesmo nome, mas comportamentos diferentes.

> Facilita o uso de cédigo genérico.

s
%)
L
3
<
)
I
o
I
(©)

39/67

POO — © 2025 ALVES, M.

using System;
using System.Collections.Generic;

class Animal

{
public virtual void falar()
{

Console.WriteLine("O animal faz um som.");

}

class Cachorro : Animal

{

public override void falar()

Polimorfismo |l

POO — © 2025 ALVES, M.

Polimorfismo i1

Console.WriteLine("0 cachorro late: Au Au!");

class Gato : Animal

{

public override void falar()

{

Console.WriteLine ("0 gato mia: Miau!");

}

class Program

{

— © 2025 ALVES, M.

POO

static void Main()

{
List<Animal> animais = new List<Animal>()
{
new Cachorro(),
new Gato()

+;

foreach (var a in animais)

{
a.falar();

Polimorfismo IV

Polimorfismo V

Cédigo 7: Polimorfismo em C#

s
)
L
3
<
)
N
o
1Y
©)
|
o
o
o

43/67

Abstracao

Abstracao |

Abstracao é a capacidade de modelar conceitos do mundo real em classes. Em C#, é
implementada com classes abstratas ou interfaces.

> Define apenas o que deve ser feito, ndo como.

> Obriga classes filhas a implementarem os métodos.

s
)
L
3
<
)
N
o
1Y
©)

45/67

© 2025 ALVES, M.

POO

using System;
using System.Collections.Generic;

abstract class Forma

{
public abstract double CalcularArea();
+

class Quadrado : Forma
{

private double lado;

public Quadrado(double lado)

{
this.lado = lado;

public override double CalcularArea()
{

return this.lado * this.lado;

Abstracao |l

© 2025 ALVES, M.

POO

NONNN
=W N

ot

+

class Circulo : Forma
{

private double raio;

public Circulo(double raio)
{

this.raio = raio;

public override double CalcularArea()

{

return Math.PI * (this.raio * this.raio);

class Program

{

static void Main()

{

List<Forma> formas = new List<Forma>() {

Abstracao Il

s
%)
L
3
<
10
I
o
«
©

44
45
46
47
48
49
50
51
52
53

Irg

Abstracao IV

new Quadrado(4),
new Circulo(3)

foreach (var f in formas)

{

}

Console.WriteLine("Area: " + f.CalcularArea());

Cédigo 8: Abstracao em C#

48/67

Topicos Avancados

Padroes de Arquitetura |

Padrdes de arquitetura sio solucGes comprovadas para problemas recorrentes no design
de software. Eles ajudam a organizar o sistema de forma modular, manutenivel e esca-
lavel.

> Fornecem estruturas e diretrizes para a construcdo do software.
> Permitem comunicacao mais clara entre desenvolvedores.

> Exemplos de padrGes de arquitetura:

s
)
L
3
<
)
N
o
1Y
©)

50,67

POO

s
)
L
3
<
)
N
o
1Y
©)
|

»
»

»

»

Padroes de Arquitetura Il

MVC (Model-View-Controller): separa dados, I6gica de negécios e interface.
MVP (Model-View-Presenter): similar ao MVC, mas o Presenter manipula a légica
da view.

MVVM (Model-View-ViewModel): usado em aplica¢cdes com bindings, popular em
.NET/WPF.

Arquitetura em Camadas: divide o sistema em camadas como View, BLL (Business
Logic Layer) e DAL (Data Access Layer).

51/67

Padroes de Arquitetura 11l

» Hexagonal: promove independéncia de frameworks e infraestrutura.

» Microservices: cada servico é independente, focado em um dominio especifico.

» Event-Driven: comunicacdo baseada em eventos, desacoplamento entre componentes.

» Domain-Driven Design (DDD): foco no modelo de dominio e regras de negécio,
organiza o sistema em bounded contexts e facilita manutencdo de sistemas complexos.

s
)
L
3
<
)
N
o
1Y
©)

52/67

Padroes de Arquitetura IV

Atencao!

Padroes de arquitetura s3o diferentes de design patterns; eles estruturam todo o
sistema, enquanto design patterns resolvem problemas de componentes especificos.

s
%)
L
3
<
)
I
o
I
(©)

53/67

MVC: Model-View-Controller |

O MVC é um padrao de arquitetura que organiza a aplicacdo em trés componentes prin-
cipais:

s
)
L
3
<
)
N
o
1Y
©)
|

POO

54/67

s
)
L
3
<
)
N
o
1Y
©)
|
o
o
o

MVC: Model-View-Controller Il

> O
x. —> Controller
] Request Contacts i
e Shows L Model
Returns
View & { Abstraction Layer } ‘
Delivers

Database

55/67

MVC: Model-View-Controller Il

> Model (Modelo): representa os dados e a légica de negdcio.
> View (Visdo): responsavel pela interface e apresentacdo dos dados.

> Controller (Controlador): recebe as entradas do usuério, interage com o modelo e
atualiza a visdo.

s
)
L
3
<
)
N
o
1Y
©)

56/67

MVC: Model-View-Controller IV

Vantagens do MVC

> Separac3do de responsabilidades.
> Facilita manutenc3o e testes.

> Permite miultiplas visdes para os mesmos dados.

s
)
L
3
<
)
N
o
1Y
©)

POO

57/67

© 2025 ALVES, M.

POO

using System.Collections.Generic;
using System.Data.SqlClient;

public class ProdutoModel

{

private readonly ConnectionFactory factory;
public ProdutolModel(ConnectionFactory factory)
{
this.factory = factory;
public List<Produto> ListarProdutos()
List<Produto> lista = new List<Produto>();
using (SqlConnection con = factory.GetConnection())
{

con.0Open() ;

string sql = "SELECT nome, preco FROM produtos";
using (SqlCommand cmd = new SqlCommand(sql, con))

Exemplo de MVC |

© 2025 ALVES, M.

POO

using (SqlDataReader reader = cmd.ExecuteReader())
{
while (reader.Read())
{
string nome = reader.GetString(0);
double preco = reader.GetDouble(1);

lista.Add(new Produto(nome, preco));

return lista;

Cédigo 9: Exemplo de Model.

Exemplo de

© 2025 ALVES, M.

POO

Exemplo de MVC Il

using System;
using System.Collections.Generic;

public class ProdutoView

{

public void ExibirProdutos(List<Produto> produtos)

{

Console.WriteLine("=== LISTA DE PRODUTOS ===\n");
foreach (var p in produtos)

{
Console.WriteLine ($"Nome: {p.Nome} | Prego: R$ {p.Precol}");

Cédigo 10: Exemplo de Constroller.

© 2025 ALVES, M.

POO

Exemplo de

using System;
using System.Collections.Generic;

public class ProdutoView

{

public void ExibirProdutos(List<Produto> produtos)
{
Console.WriteLine("=== LISTA DE PRODUTOS ===\n");

foreach (var p in produtos)

{
Console.WriteLine($"Nome: {p.Nome} | Prego: R$ {p.Precol}");
}

Console.WriteLine("\n g

Cédigo 11: Exemplo de View para WebSites.

Topicos para Aprofundamento |

Além dos conceitos basicos, existem varios topicos avancados que s3o importantes para
estudo futuro em POO.

> Interfaces e Classes Abstratas: definicio de contratos e implementac3do parcial de
classes.

> Namespaces: organizacdo de classes.

> Design Patterns: padrdes de projeto como Singleton, Factory, Observer, Strategy,
Decorator.

> Polimorfismo avancado: sobrecarga, sobrescrita, polimorfismo paramétrico
(generics).

s
)
L
3
<
)
N
o
1Y
©)

62/67

POO

s
)
L
3
<
)
N
o
1Y
©)
|

Topicos para Aprofundamento

Encapsulamento avancado: uso correto de atributos e métodos privados,
protegidos e publicos, getters/setters com validac3o.

Principios SOLID: SRP, OCP, LSP, ISP e DIP para cédigo limpo e modular.

Exceptions e Tratamento de Erros: lancar e capturar excecoes, excecdes
customizadas para regras de negdcio.

Testabilidade: Testes unitarios.

Arquitetura avancada: MVC, MVVM, MVP, Hexagonal, Domain-Driven Design
(DDD), camadas, servicos e repositérios.

63/67

Leitura Recomendada

(Deitel et al., 2003)

C ipreniindy—a<
i ((,\ “Web

v % C
[=Services

™

s
)
L
3
<
)
N
o
1Y
©)
|

POO

64/67

s
)
L
3
<
)
N
o
1Y
©)
|
o
o
o

Referéncias |

DEITEL, H. M. et al. C# : como programar. S3o Paulo: Pearson Education, 2003.

ISBN 8534614598.

GAMMA, Erich et al. Padroes de Projetos: Solucoes Reutilizaveis de Software
Orientados a Objetos. [S. /|: Bookman, 2000. ISBN 9788573076103.

MARTIN, Robert C. Arquitetura Limpa: O Guia do Artesdo para Estrutura e
Design de Software. [S. /|: Alta Books, 2019. p. 432. ISBN 978-85-508-0460-6.

MICROSOFT. C# Documentation. Accessed: 2025-12-02. Microsoft Learn. 2025.
Disponivel em: https://learn.microsoft.com/en-us/dotnet/csharp/.

65/67

https://learn.microsoft.com/en-us/dotnet/csharp/

Estes slides estao protegidos por uma licenca Creative Commons

@O0

Este modelo foi adaptado de Maxime Chupin.

s
%)
L
3
<
)
I
o
I
(©)
|

POO

66,67

https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://gitlab.gutenberg-asso.fr/mchupin/amurmaple/

.’ Marisangila Alves, MSc
.’ marisangila.alves@catolicasc.org.br

marisangila.com.br

Catélica SC Catélica de Santa Catarina

Centro Universitario

2025/2

Programacao Orientada a Objetos
POO

marisangila.com.br

	História
	Definição
	Classe
	Propriedades
	Métodos
	Objeto
	Construtor
	Encapsulamento
	Herança
	Polimorfismo
	Abstração
	Tópicos Avançados
	Referências

