
PO
O

—
©

20
25

AL
VE

S,
M

.

1/67

Marisangila Alves, MSc
marisangila.alves@catolicasc.org.br

marisangila.com.br

Católica de Santa Catarina

2025/2

Programação Orientada a Objetos
POO

marisangila.com.br


Sumário

1 História
2 Definição
3 Classe
4 Propriedades
5 Métodos
6 Objeto

7 Construtor
8 Encapsulamento
9 Herança
10 Polimorfismo
11 Abstração
12 Tópicos Avançados



PO
O

—
©

20
25

AL
VE

S,
M

.

2/67

História



PO
O

—
©

20
25

AL
VE

S,
M

.

3/67

História da Programação Orientada a Objetos I

A Programação Orientada a Objetos (POO) surgiu como resposta à necessidade de
criar sistemas mais modulares, reutilizáveis e fáceis de manter.
� 1960s: Linguagem Simula introduz o conceito de classes e objetos (para

simulações de sistemas complexos).
� 1970s: Surge Smalltalk, que populariza o paradigma totalmente orientado a

objetos.
� 1980s: Linguagens como C++ unem programação estruturada e POO.



PO
O

—
©

20
25

AL
VE

S,
M

.

4/67

História da Programação Orientada a Objetos II

� 1990s: Java consolida a POO no desenvolvimento empresarial.
� 2000s em diante: POO se torna padrão em linguagens como C#, Python, csharp,

entre outras.



PO
O

—
©

20
25

AL
VE

S,
M

.

5/67

História da Programação Orientada a Objetos III

Nota:
A POO não substituiu outros paradigmas, mas se tornou o mais utilizado em aplica-
ções de grande porte.



PO
O

—
©

20
25

AL
VE

S,
M

.

6/67

Definição



PO
O

—
©

20
25

AL
VE

S,
M

.

7/67

O que é Programação Orientada a Objetos? I

A Programação Orientada a Objetos (POO) é um paradigma de programação que
organiza o software em objetos, que combinam dados (atributos) e comportamentos
(métodos).
� Facilita a manutenção e o reuso do código.
� Reflete conceitos do mundo real no software.
� Usa princípios como abstração, encapsulamento, herança e polimorfismo.



PO
O

—
©

20
25

AL
VE

S,
M

.

8/67

POO vs Programação Estruturada I

Programação Estruturada e POO têm abordagens diferentes para resolver problemas:
� Estruturada:

� O foco está em funções e procedimentos.
� Os dados são separados das funções.
� Mais adequada para programas pequenos e simples.

� Orientada a Objetos:
� O foco está em objetos, que reúnem dados e comportamentos.
� Os dados são encapsulados nas classes.
� Mais adequada para sistemas grandes e complexos.



PO
O

—
©

20
25

AL
VE

S,
M

.

9/67

POO vs Programação Estruturada II

Outros paradguimas:
� Estruturado: usa controle de fluxo estruturado (ex: Pascal, C).
� Orientado a Objetos (POO): organiza código em classes e objetos, com

encapsulamento, herança e polimorfismo (ex: Java, C++, PHP, C#, Python,
Swift1, Kotlin2).

� Funcional: enfatiza funções puras e imutabilidade, evitando efeitos colaterais (ex:
Haskell, Elixir, JavaScript).

3 4



PO
O

—
©

20
25

AL
VE

S,
M

.

10/67

POO vs Programação Estruturada III

ò Atenção!

A POO não substitui a programação estruturada: ela a complementa, forne-
cendo novas ferramentas para organizar o código.

1Swift é muito usado em desenvolvimento mobile iOS
2Kotlin é usado para Android
3Programação orientada a eventos é muito utilizada em interfaces gráficas, onde a execução do código

depende de ações do usuário como cliques e digitação.
4Muitas linguagens modernas são multiparadigma, ou seja, suportam mais de um paradigma, como

Python (estruturado, OO, funcional) e JavaScript (funcional, OO, orientada a eventos).



PO
O

—
©

20
25

AL
VE

S,
M

.

11/67

Conceitos Fundamentais da POO I

� Classe: o molde que define atributos e métodos.
� Objeto: instância concreta de uma classe.
� Encapsulamento: proteção dos dados internos, controlando o acesso com

modificadores (public, private, protected).
� Herança: uma classe pode herdar atributos e métodos de outra.
� Polimorfismo: diferentes classes podem redefinir métodos de formas distintas.
� Abstração: capacidade de representar conceitos do mundo real em modelos

simplificados.



PO
O

—
©

20
25

AL
VE

S,
M

.

12/67

Classe



PO
O

—
©

20
25

AL
VE

S,
M

.

13/67

Classe

Classe:

É um modelo ou molde que define a estrutura e o
comportamento de objetos em programação orientada a
objetos.



PO
O

—
©

20
25

AL
VE

S,
M

.

14/67

Propriedades



PO
O

—
©

20
25

AL
VE

S,
M

.

15/67

Propriedades (Atributos) I

As propriedades — também chamadas de atributos — representam as características
ou dados que descrevem um objeto.
� São variáveis declaradas dentro da classe.
� Cada objeto possui sua própria cópia das propriedades.
� Exemplos: nome, idade, saldo, cor.

Exemplo:
Na classe Pessoa, atributos poderiam ser: nome, idade, cpf.



PO
O

—
©

20
25

AL
VE

S,
M

.

16/67

Propriedades (Atributos) II

1 class Pessoa
2 {
3 // Atributos (propriedades)
4 public string nome;
5 public int idade;
6 public string cpf;
7 }

Código 1: Classe com atributos em C#



PO
O

—
©

20
25

AL
VE

S,
M

.

17/67

Métodos



PO
O

—
©

20
25

AL
VE

S,
M

.

18/67

Métodos I

Os métodos são funções definidas dentro de uma classe que descrevem o comportamento
do objeto.
� Podem manipular ou acessar atributos.
� Representam ações que o objeto pode realizar.
� Exemplos: apresentar(), depositar(), calcularIdade().

Exemplo:
Na classe Pessoa, um método poderia ser apresentar(), que imprime o nome e a idade.



PO
O

—
©

20
25

AL
VE

S,
M

.

19/67

Métodos II

1 using System;
2
3 class Pessoa
4 {
5 public string nome;
6 public int idade;
7
8 // Método (comportamento)
9 public void apresentar()

10 {
11 Console.WriteLine($"Olá, meu nome é {this.nome} e tenho {this.idade} anos.");
12 }
13 }

Código 2: Classe com método em C#



PO
O

—
©

20
25

AL
VE

S,
M

.

20/67

Objeto



PO
O

—
©

20
25

AL
VE

S,
M

.

21/67

Classe vs Objeto I

É comum confundir classe com objeto. Mas eles são conceitos distintos:
� Classe: é o molde, o projeto ou a receita.
� Objeto: é a instância concreta criada a partir da classe.

Nota:
Uma classe define o que um objeto pode ter e fazer. Um objeto é um exemplo
real daquela definição.

Exemplo:
A classe Carro pode ter atributos como cor e modelo, e métodos como acelerar() e
frear(). O objeto seria um carro específico, por exemplo: um Fiat Uno vermelho de
2010.



PO
O

—
©

20
25

AL
VE

S,
M

.

22/67

Classe vs Objeto II

1 using System;
2
3 // Classe (molde)
4 class Carro
5 {
6 public string modelo;
7 public string cor;
8
9 public void acelerar()

10 {
11 Console.WriteLine("O carro está acelerando!");
12 }
13 }
14
15 // Objeto (instância da classe)
16 class Program
17 {
18 static void Main()
19 {
20 Carro meuCarro = new Carro();
21 meuCarro.modelo = "Fiat Uno";



PO
O

—
©

20
25

AL
VE

S,
M

.

23/67

Classe vs Objeto III

22 meuCarro.cor = "Vermelho";
23
24 Console.WriteLine($"Modelo: {meuCarro.modelo}, Cor: {meuCarro.cor}");
25 meuCarro.acelerar();
26 }
27 }

Código 3: Diferença entre classe e objeto



PO
O

—
©

20
25

AL
VE

S,
M

.

24/67

Construtor



PO
O

—
©

20
25

AL
VE

S,
M

.

25/67

Construtores em Programação Orientada a Objetos I

Construtor é um método especial de uma classe que é chamado automaticamente sempre
que um objeto é criado. Ele é usado para inicializar propriedades do objeto e garantir
que ele comece em um estado válido.
� No C#, o construtor é definido com um método que possui o mesmo nome da

classe.
� Pode receber parâmetros para inicializar atributos do objeto.
� Pode conter regras de validação ou configuração inicial do objeto.

Nota:
Um construtor evita que o usuário da classe tenha que chamar métodos de inicialização
manualmente, garantindo consistência e segurança no estado do objeto.



PO
O

—
©

20
25

AL
VE

S,
M

.

26/67

Construtores em Programação Orientada a Objetos II
O exemplo a seguir mostra uma classe Produto com construtor para inicializar nome e
preço:

1 using System;
2
3 class Produto
4 {
5 public string nome;
6 public double preco;
7
8 // Construtor
9 public Produto(string nome, double preco)

10 {
11 this.nome = nome;
12 this.preco = preco;
13 Console.WriteLine($"Produto '{this.nome}' criado com preço R$ {this.preco}.");
14 }
15 }
16
17 // Criando objetos
18 class Programa
19 {



PO
O

—
©

20
25

AL
VE

S,
M

.

27/67

Construtores em Programação Orientada a Objetos III

20 static void Main()
21 {
22 Produto produto1 = new Produto("Caneta", 1.5);
23 Produto produto2 = new Produto("Caderno", 12.0);
24 }
25 }

Código 4: Exemplo de construtor em C#



PO
O

—
©

20
25

AL
VE

S,
M

.

28/67

Encapsulamento



PO
O

—
©

20
25

AL
VE

S,
M

.

29/67

Encapsulamento I

Encapsulamento significa proteger os dados de um objeto, restringindo o acesso direto
aos atributos e fornecendo métodos de acesso (getters e setters).
� Usa modificadores: public, private, protected.
� Evita alterações indevidas nos atributos.



PO
O

—
©

20
25

AL
VE

S,
M

.

30/67

Encapsulamento II

1 using System;
2

3 class ContaBancaria
4 {
5 private double saldo;
6

7 public ContaBancaria(double saldoInicial)
8 {
9 this.saldo = saldoInicial;

10 }
11

12 // Getter
13 public double getSaldo()
14 {



PO
O

—
©

20
25

AL
VE

S,
M

.

31/67

Encapsulamento III
15 return this.saldo;
16 }
17

18 // Setter controlado
19 public void depositar(double valor)
20 {
21 if (valor > 0)
22 {
23 this.saldo += valor;
24 }
25 }
26 }
27

28 class Program
29 {



PO
O

—
©

20
25

AL
VE

S,
M

.

32/67

Encapsulamento IV

30 static void Main()
31 {
32 ContaBancaria conta = new ContaBancaria(100);
33 conta.depositar(50);
34 Console.WriteLine("Saldo atual: " + conta.getSaldo);
35 }
36 }

Código 5: Encapsulamento em C#



PO
O

—
©

20
25

AL
VE

S,
M

.

33/67

Herança



PO
O

—
©

20
25

AL
VE

S,
M

.

34/67

Herança I

Herança permite que uma classe (filha) reutilize atributos e métodos de outra (pai).
� Promove reuso de código.
� Facilita extensibilidade.



PO
O

—
©

20
25

AL
VE

S,
M

.

35/67

Herança II

1 using System;
2
3 class Pessoa
4 {
5 public string nome;
6
7 public Pessoa(string nome)
8 {
9 this.nome = nome;

10 }
11
12 public virtual void apresentar()
13 {
14 Console.WriteLine($"Olá, eu sou {this.nome}");
15 }
16 }
17
18 class Aluno : Pessoa
19 {
20 public string curso;
21



PO
O

—
©

20
25

AL
VE

S,
M

.

36/67

Herança III

22 public Aluno(string nome, string curso) : base(nome)
23 {
24 this.curso = curso;
25 }
26
27 public override void apresentar()
28 {
29 Console.WriteLine($"Sou {this.nome}, aluno de {this.curso}");
30 }
31 }
32
33 class Program
34 {
35 static void Main()
36 {
37 Aluno aluno = new Aluno("João", "Computação");
38 aluno.apresentar();
39 }
40 }



PO
O

—
©

20
25

AL
VE

S,
M

.

37/67

Herança IV

Código 6: Herança em C#



PO
O

—
©

20
25

AL
VE

S,
M

.

38/67

Polimorfismo



PO
O

—
©

20
25

AL
VE

S,
M

.

39/67

Polimorfismo I

Polimorfismo significa “muitas formas”. Permite que diferentes classes implementem o
mesmo método de maneiras distintas.
� Métodos com o mesmo nome, mas comportamentos diferentes.
� Facilita o uso de código genérico.



PO
O

—
©

20
25

AL
VE

S,
M

.

40/67

Polimorfismo II

1 using System;
2 using System.Collections.Generic;
3

4 class Animal
5 {
6 public virtual void falar()
7 {
8 Console.WriteLine("O animal faz um som.");
9 }

10 }
11

12 class Cachorro : Animal
13 {
14 public override void falar()



PO
O

—
©

20
25

AL
VE

S,
M

.

41/67

Polimorfismo III
15 {
16 Console.WriteLine("O cachorro late: Au Au!");
17 }
18 }
19

20 class Gato : Animal
21 {
22 public override void falar()
23 {
24 Console.WriteLine("O gato mia: Miau!");
25 }
26 }
27

28 class Program
29 {



PO
O

—
©

20
25

AL
VE

S,
M

.

42/67

Polimorfismo IV
30 static void Main()
31 {
32 List<Animal> animais = new List<Animal>()
33 {
34 new Cachorro(),
35 new Gato()
36 };
37

38 foreach (var a in animais)
39 {
40 a.falar(); // comportamento diferente com o mesmo

método↪→

41 }
42 }
43 }



PO
O

—
©

20
25

AL
VE

S,
M

.

43/67

Polimorfismo V

Código 7: Polimorfismo em C#



PO
O

—
©

20
25

AL
VE

S,
M

.

44/67

Abstração



PO
O

—
©

20
25

AL
VE

S,
M

.

45/67

Abstração I

Abstração é a capacidade de modelar conceitos do mundo real em classes. Em C#, é
implementada com classes abstratas ou interfaces.
� Define apenas o que deve ser feito, não como.
� Obriga classes filhas a implementarem os métodos.



PO
O

—
©

20
25

AL
VE

S,
M

.

46/67

Abstração II

1 using System;
2 using System.Collections.Generic;
3
4 abstract class Forma
5 {
6 public abstract double CalcularArea();
7 }
8
9 class Quadrado : Forma

10 {
11 private double lado;
12
13 public Quadrado(double lado)
14 {
15 this.lado = lado;
16 }
17
18 public override double CalcularArea()
19 {
20 return this.lado * this.lado;
21 }



PO
O

—
©

20
25

AL
VE

S,
M

.

47/67

Abstração III
22 }
23
24 class Circulo : Forma
25 {
26 private double raio;
27
28 public Circulo(double raio)
29 {
30 this.raio = raio;
31 }
32
33 public override double CalcularArea()
34 {
35 return Math.PI * (this.raio * this.raio);
36 }
37 }
38
39 class Program
40 {
41 static void Main()
42 {
43 List<Forma> formas = new List<Forma>() {



PO
O

—
©

20
25

AL
VE

S,
M

.

48/67

Abstração IV

44 new Quadrado(4),
45 new Circulo(3)
46 };
47
48 foreach (var f in formas)
49 {
50 Console.WriteLine("Área: " + f.CalcularArea());
51 }
52 }
53 }

Código 8: Abstração em C#



PO
O

—
©

20
25

AL
VE

S,
M

.

49/67

Tópicos Avançados



PO
O

—
©

20
25

AL
VE

S,
M

.

50/67

Padrões de Arquitetura I

Padrões de arquitetura são soluções comprovadas para problemas recorrentes no design
de software. Eles ajudam a organizar o sistema de forma modular, manutenível e escá-
lavel.
� Fornecem estruturas e diretrizes para a construção do software.
� Permitem comunicação mais clara entre desenvolvedores.
� Exemplos de padrões de arquitetura:



PO
O

—
©

20
25

AL
VE

S,
M

.

51/67

Padrões de Arquitetura II

� MVC (Model-View-Controller): separa dados, lógica de negócios e interface.
� MVP (Model-View-Presenter): similar ao MVC, mas o Presenter manipula a lógica

da view.
� MVVM (Model-View-ViewModel): usado em aplicações com bindings, popular em

.NET/WPF.
� Arquitetura em Camadas: divide o sistema em camadas como View, BLL (Business

Logic Layer) e DAL (Data Access Layer).



PO
O

—
©

20
25

AL
VE

S,
M

.

52/67

Padrões de Arquitetura III

� Hexagonal: promove independência de frameworks e infraestrutura.
� Microservices: cada serviço é independente, focado em um domínio específico.
� Event-Driven: comunicação baseada em eventos, desacoplamento entre componentes.
� Domain-Driven Design (DDD): foco no modelo de domínio e regras de negócio,

organiza o sistema em bounded contexts e facilita manutenção de sistemas complexos.



PO
O

—
©

20
25

AL
VE

S,
M

.

53/67

Padrões de Arquitetura IV

ò Atenção!

Padrões de arquitetura são diferentes de design patterns; eles estruturam todo o
sistema, enquanto design patterns resolvem problemas de componentes específicos.



PO
O

—
©

20
25

AL
VE

S,
M

.

54/67

MVC: Model-View-Controller I

O MVC é um padrão de arquitetura que organiza a aplicação em três componentes prin-
cipais:



PO
O

—
©

20
25

AL
VE

S,
M

.

55/67

MVC: Model-View-Controller II



PO
O

—
©

20
25

AL
VE

S,
M

.

56/67

MVC: Model-View-Controller III

� Model (Modelo): representa os dados e a lógica de negócio.
� View (Visão): responsável pela interface e apresentação dos dados.
� Controller (Controlador): recebe as entradas do usuário, interage com o modelo e

atualiza a visão.



PO
O

—
©

20
25

AL
VE

S,
M

.

57/67

MVC: Model-View-Controller IV

Vantagens do MVC

� Separação de responsabilidades.
� Facilita manutenção e testes.
� Permite múltiplas visões para os mesmos dados.



PO
O

—
©

20
25

AL
VE

S,
M

.

58/67

Exemplo de MVC I
1 using System.Collections.Generic;
2 using System.Data.SqlClient;
3
4 public class ProdutoModel
5 {
6 private readonly ConnectionFactory factory;
7
8 public ProdutoModel(ConnectionFactory factory)
9 {

10 this.factory = factory;
11 }
12
13 public List<Produto> ListarProdutos()
14 {
15 List<Produto> lista = new List<Produto>();
16
17 using (SqlConnection con = factory.GetConnection())
18 {
19 con.Open();
20
21 string sql = "SELECT nome, preco FROM produtos";
22 using (SqlCommand cmd = new SqlCommand(sql, con))



PO
O

—
©

20
25

AL
VE

S,
M

.

59/67

Exemplo de MVC II

23 using (SqlDataReader reader = cmd.ExecuteReader())
24 {
25 while (reader.Read())
26 {
27 string nome = reader.GetString(0);
28 double preco = reader.GetDouble(1);
29
30 lista.Add(new Produto(nome, preco));
31 }
32 }
33 }
34
35 return lista;
36 }
37 }

Código 9: Exemplo de Model.



PO
O

—
©

20
25

AL
VE

S,
M

.

60/67

Exemplo de MVC III

1 using System;
2 using System.Collections.Generic;
3
4 public class ProdutoView
5 {
6 public void ExibirProdutos(List<Produto> produtos)
7 {
8 Console.WriteLine("=== LISTA DE PRODUTOS ===\n");
9

10 foreach (var p in produtos)
11 {
12 Console.WriteLine($"Nome: {p.Nome} | Preço: R$ {p.Preco}");
13 }
14 }
15 }

Código 10: Exemplo de Constroller.



PO
O

—
©

20
25

AL
VE

S,
M

.

61/67

Exemplo de MVC IV

1 using System;
2 using System.Collections.Generic;
3
4 public class ProdutoView
5 {
6 public void ExibirProdutos(List<Produto> produtos)
7 {
8 Console.WriteLine("=== LISTA DE PRODUTOS ===\n");
9

10 foreach (var p in produtos)
11 {
12 Console.WriteLine($"Nome: {p.Nome} | Preço: R$ {p.Preco}");
13 }
14
15 Console.WriteLine("\n==========================");
16 }
17 }

Código 11: Exemplo de View para WebSites.



PO
O

—
©

20
25

AL
VE

S,
M

.

62/67

Tópicos para Aprofundamento I

Além dos conceitos básicos, existem vários tópicos avançados que são importantes para
estudo futuro em POO.
� Interfaces e Classes Abstratas: definição de contratos e implementação parcial de

classes.
� Namespaces: organização de classes.
� Design Patterns: padrões de projeto como Singleton, Factory, Observer, Strategy,

Decorator.
� Polimorfismo avançado: sobrecarga, sobrescrita, polimorfismo paramétrico

(generics).



PO
O

—
©

20
25

AL
VE

S,
M

.

63/67

Tópicos para Aprofundamento II

� Encapsulamento avançado: uso correto de atributos e métodos privados,
protegidos e públicos, getters/setters com validação.

� Princípios SOLID: SRP, OCP, LSP, ISP e DIP para código limpo e modular.
� Exceptions e Tratamento de Erros: lançar e capturar exceções, exceções

customizadas para regras de negócio.
� Testabilidade: Testes unitários.
� Arquitetura avançada: MVC, MVVM, MVP, Hexagonal, Domain-Driven Design

(DDD), camadas, serviços e repositórios.



PO
O

—
©

20
25

AL
VE

S,
M

.

64/67

Leitura Recomendada

(Deitel et al., 2003)



PO
O

—
©

20
25

AL
VE

S,
M

.

65/67

Referências I

DEITEL, H. M. et al. C# : como programar. São Paulo: Pearson Education, 2003.
ISBN 8534614598.

GAMMA, Erich et al. Padrões de Projetos: Soluções Reutilizáveis de Software
Orientados a Objetos. [S. l.]: Bookman, 2000. ISBN 9788573076103.

MARTIN, Robert C. Arquitetura Limpa: O Guia do Artesão para Estrutura e
Design de Software. [S. l.]: Alta Books, 2019. p. 432. ISBN 978-85-508-0460-6.

MICROSOFT. C# Documentation. Accessed: 2025-12-02. Microsoft Learn. 2025.
Disponível em: https://learn.microsoft.com/en-us/dotnet/csharp/.

https://learn.microsoft.com/en-us/dotnet/csharp/


PO
O

—
©

20
25

AL
VE

S,
M

.

66/67

Estes slides estão protegidos por uma licença Creative Commons

Este modelo foi adaptado de Maxime Chupin.

https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://gitlab.gutenberg-asso.fr/mchupin/amurmaple/


PO
O

—
©

20
25

AL
VE

S,
M

.

67/67

Marisangila Alves, MSc
marisangila.alves@catolicasc.org.br

marisangila.com.br

Católica de Santa Catarina

2025/2

Programação Orientada a Objetos
POO

marisangila.com.br

	História
	Definição
	Classe
	Propriedades
	Métodos
	Objeto
	Construtor
	Encapsulamento
	Herança
	Polimorfismo
	Abstração
	Tópicos Avançados
	Referências

