Marisangila Alves, MSc

marisangila.alves@udesc.br marisangila.com.br

Universidade do Estado de Santa Catarina

2025/2

JOINVILLE CENTRO DE CIÊNCIAS TECNOLÓGICAS

UDESC

DO ESTADO DE

Sistemas Operacionais

Escalonamento

Sumário

- 1 Definição
- 2 Preempção
- 3 Algoritmos

- 4 Algoritmos não Preemptivos
- 5 Algortimos Preemptivos
- 6 Bibliografia

Definição

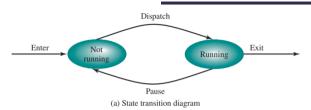

Relembrando...

Figura 1: Estados de um processo (SILBERSCHATZ; GALVIN; GAGNE, 2001).

- **Scheduler** (Escalonador): decide qual processo deve usar a CPU.
- **Dispatcher:** realiza a troca de contexto e entrega a CPU ao processo escolhido.
- Portanto, em resumo, o scheduler escolhe, o dispatcher executa a escolha.

Escalonamento II

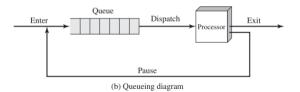


Figura 2: Estados de um processo (SILBERSCHATZ; GALVIN; GAGNE, 2001).

- > Em sistemas multiprogramados, vários processos ou threads podem competir pela CPU quando estão no estado pronto.
- Com apenas uma CPU disponível, o sistema operacional precisa decidir qual processo será executado.
- Essa decisão é feita pelo escalonador, usando um algoritmo de escalonamento.

Objetivos do Escalonamento de Processos

- > Maximizar a utilização do processador
 - >> Maximizar a produção do sistema (throughput)
 - >> Número de processos executados por unidade de tempo
- Minimizar o tempo de execução (turnaround)
 - >> Tempo total para executar um determinado processo
- > Minimizar o tempo de espera
 - >> Tempo que um processo permanece na lista de aptos
- Minimizar o tempo de resposta
 - >> Tempo decorrido entre uma requisição e a sua realização

Tipos de Tarefas I

Tipo de Tarefa	Resumo
Tarefas de tempo real	Exigem previsibilidade nos tempos de resposta, geralmente as-
	sociadas a sistemas críticos.
Tarefas interativas	Respondem rapidamente a eventos externos, sem exigência de
	previsibilidade, como editores de texto e navegadores.
Tarefas em lote (batch)	Executam sem requisitos temporais explícitos, como backups e
	cálculos longos, sem intervenção do usuário.

Tabela 1: Tipos de tarefas em sistemas operacionais

> Todos:

- >> Justiça: dar a cada processo uma porção justa da CPU;
- Aplicação Política: verificar se a política de escalonamento está sendo seguida;
- >>> Equilíbrio: manter todas as partes ocupadas.

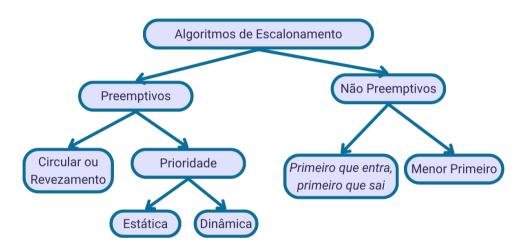
> Sistemas em lote:

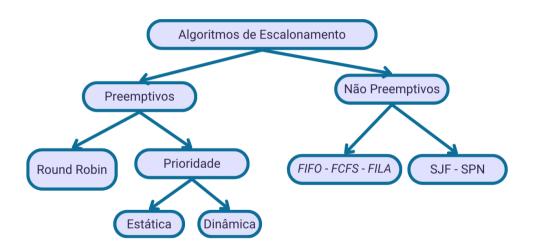
- » Maximizar a utilização da CPU: Garantir que o processador esteja sempre em operação.
- Maximizar a vazão (Throughput): Maximizar a quantidade de tarefas concluídas em um certo período de tempo.
- » Minimizar o tempo de execução: Medir quantas tarefas são finalizadas dentro de um intervalo.

- > Sistemas Interativos:
 - >>> Reduzir o tempo de resposta: Diminuir o tempo entre o pedido de uma ação e o momento em que ela é realizada.
 - >>> Proporcionalidade: Satisfazer às expectativas dos usuários.

- > Sistemas de tempo real:
 - >>> Cumprimento de prazos: Evitar perda de dados.
 - >> Previsibilidade: Evitar a degradação da qualidade.

Preempção


> Sistemas preemptivos:


- >> O processo pode ser interrompido se: terminar seu tempo, fazer uma chamada de sistema ou uma tarefa de maior prioridade precisar da CPU.
- >> O escalonador avalia os processos a cada interrupção para decidir se troca o processo em execução.

- > Sistemas não preemptivos:
 - >> O processo em execução só libera o processador ao:
 - Terminar:
 - Pedir uma operação de E/S;
 - Liberar explicitamente o processador.

Algoritmos

- > Algoritmos não preemptivos (cooperativos):
 - >> First-In First-Out (FIFO) / First Come First-Served (FCFS)
 - >> Shortest Job First (SJF) / Shortest Process Next (SPN)
- > Algoritmos preemptivos:
 - >> Round Robin (circular)
 - >> Prioridades

Modelo I

Considere os seguintes processos para analisar os algoritmos de escalonamento: 1

Processo	T1	T2	Т3	T4	T5
Ordem de Chegada ²	0	0	1	3	5
Tempo de Execução	5	2	4	1	2
Prioridade ³	2	3	1	4	5

Tabela 2: Tabela de processos para análise de escalonamento

Nota:

Quantum: Duas unidades de tempo discreto.

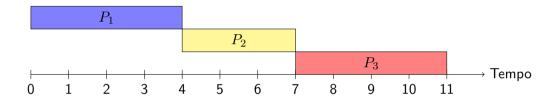
¹Nesse cenário, será considerado um sistema monoprocessado e sem interrupções.

²Se os processos chegam ao mesmo tempo, o critério de desempate é o índice. Exemplo: T1 e T2 chegam ao mesmo tempo, T1 executa primeiro.

³Escala de Prioridade entre 1 e 5. Quanto maior o valor maior a prioridade.

Tempo Médio de Espera na Fila I

O tempo de espera de um processo é o período que ele permanece na **fila de aptos** antes de começar a execução.


Fórmula do tempo médio de espera:

$$T_{ ext{espera m\'edio}} = rac{\sum_{i=1}^{n} T_{ ext{espera},i}}{n}$$

- $ightharpoonup T_{\mathsf{espera},i}$: tempo de espera do processo i na fila
- ▶ n: número total de processos

Tempo Médio de Espera na Fila II

Exemplo com 3 processos: P_1 , P_2 , P_3

Cálculo do tempo médio de espera:

$$T_{\mathsf{m\'edio}} = \frac{0+4+7}{3} = \frac{11}{3} \approx 3.67$$

Algoritmos não Preemptivos

First-In First-Out (FIFO) / First Come First-Served (FCFS)

- > O primeiro processo a chegar na fila de aptos é o primeiro a executar.
- > Em resumo: FILA.

- > Processos aptos são inseridos no final da fila.
- > O processo no início da fila será o próximo a ser executado.
- > O processo executa até:
 - >> Liberar o processador;
 - >> Ser bloqueado;
 - >> Encerrar.

First-In First-Out (FIFO)

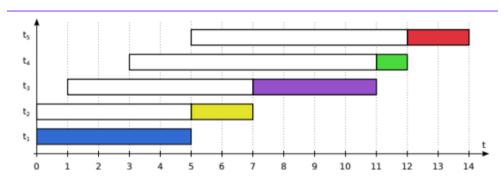


Figura 3: FIFO (Maziero, 2019).

- > Processos que utilizam entrada e saída podem ser prejudicados.
- > Exemplo:
 - >> Processo que utiliza mais tempo de CPU, como um algoritmo de ordenação.
 - >>> Processo que utiliza mais tempo de E/S, como um servidor web.

Shortest Job First (SJF) I

Shortest Process Nest (SPN)

O processo mais curto é o primeiro a executar.

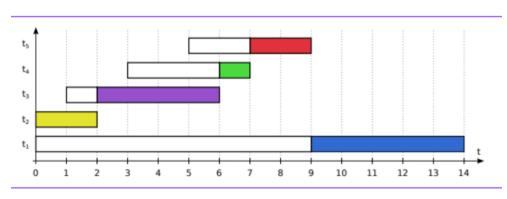


Figura 4: SJF (Maziero, 2019).

Shortest Job First (SJF) II

Shortest Process Nest (SPN)

- > Shortest Job First (SJF) / Shortest Process Next (SPN)
 - >>> Solução ótima quando todos os processos estão disponíveis.
 - >> Dificuldade para estimar o tempo de duração de um processo.
 - É possível usar o histórico de execuções anteriores para prever a duração do processo atual.
 - Quando a chegada de processos mais curtos é maior que a de processos longos, pode causar inanição desses processos.

Shortest Remaining Time First (SRTF) I

- O escalonador compara o tempo previsto de novos processos com o tempo restante dos processos atuais.
- > Se o novo processo for mais rápido, ele ganha acesso ao processador.

Shortest Remaining Time First (SRTF) II

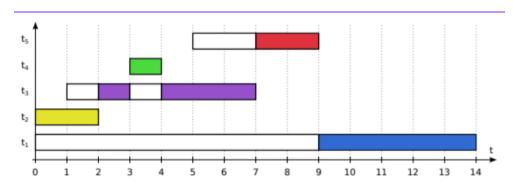


Figura 5: SRTF (Maziero, 2019).

Algortimos Preemptivos

Round Robin (RR) I

> Semelhante ao FIFO / FCFS, porém a preempção é incluída neste algoritmo (quantum).

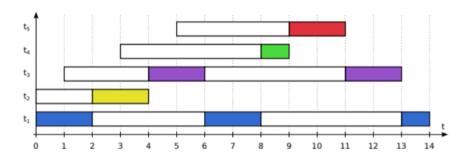


Figura 6: RR (Maziero, 2019).

Round Robin (RR) II

- Aumenta o tempo médio de execução para aplicações de tarefas em lote.
- Pode proporcionar tempo de execução melhor para aplicações interativas.
- Aumento de troca de contexto.
- > O processo libera a CPU quando:
 - >> Libera a CPU:
 - É bloqueado:
 - Encerra;
 - Ocorre preempção.

Prioridades:

- O algoritmo de escalonamento por prioridade define um modelo mais genérico de escalonamento, que permite modelar várias abordagens.
 - >> FIFO (FCFS)
 - >> SJF (SPN)
 - >> RR (Round Robin)

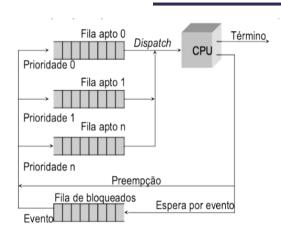


Figura 7: Múltiplas Prioridades (SILBERSCHATZ; GALVIN; GAGNE, 2001).

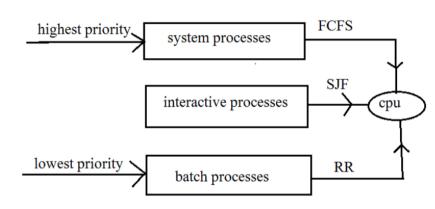


Figura 8: Exemplo de Prioridades (SILBERSCHATZ; GALVIN; GAGNE, 2001).

Estática:

- > Definida na criação do processo.
- > Não muda até o término da execução.
- > Processos de baixa prioridade podem nunca executar.
- > Isso é chamado de *starvation* (inanição).

Dinâmica:

- > Usar *aging* (envelhecimento).
- > A prioridade aumenta conforme o tempo de espera.
- > Considera tempo de espera ou uso de CPU.
- Melhora a justiça e evita inanição.

Prioridade Dinâmica

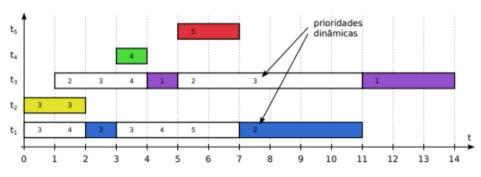


Figura 9: Prioridade Dinâmica (Maziero, 2019).

Leitura Recomendada

Capítulo 4 (OLIVEIRA; CARISSIMI; TOSCANI, 2001)

Bibliografia

OLIVEIRA, R. S.; CARISSIMI, A. S.; TOSCANI, S. S. **Sistemas Operacionais**. 2. ed. Porto Alegre: Sagra-Luzzatto, 2001.

STALLINGS, William. **Operating Systems: Internals and Design Principles**. 6. ed. Upper Saddle River, NJ: Prentice-Hall, 2009.

TANENBAUM, Andrew S. **Sistemas Operacionais Modernos**. 3. ed. São Paulo: Pearson, 2010.

SILBERSCHATZ, Abraham; GALVIN, Peter; GAGNE, Greg. **Sistemas Operacionais: Conceitos e Aplicações**. Rio de Janeiro: LTC, 2001.

TANENBAUM, Andrew S.; WOODHULL, Albert S. **Sistemas Operacionais: Projeto e Implementação**. 2. ed. Porto Alegre: Bookman, 2000.

MAZIERO, Carlos Alberto. Sistemas Operacionais: Conceitos e Mecanismos [recurso eletrônico]. Curitiba: DINF - UFPR, 2019. ISBN 978-85-7335-340-2.

Estes slides estão protegidos por uma licença Creative Commons

Este modelo foi adaptado de Maxime Chupin.

Marisangila Alves, MSc

marisangila.alves@udesc.br marisangila.com.br

JOINVILLE

CENTRO DE CIÊNCIAS

TECNOLÓGICAS

UDESC Universidade do Estado de Santa Catarina

2025/2

Sistemas Operacionais

Escalonamento