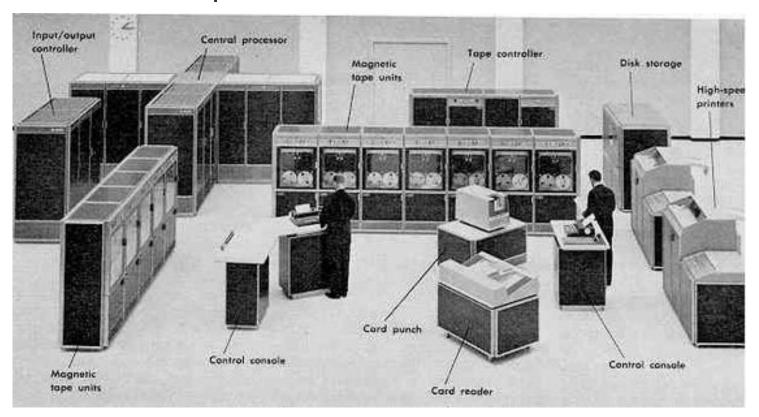


Recies de Combiltadores

Marisangila Alves, MSc


marisangila.alves@proton.me

Computação em Nuvem

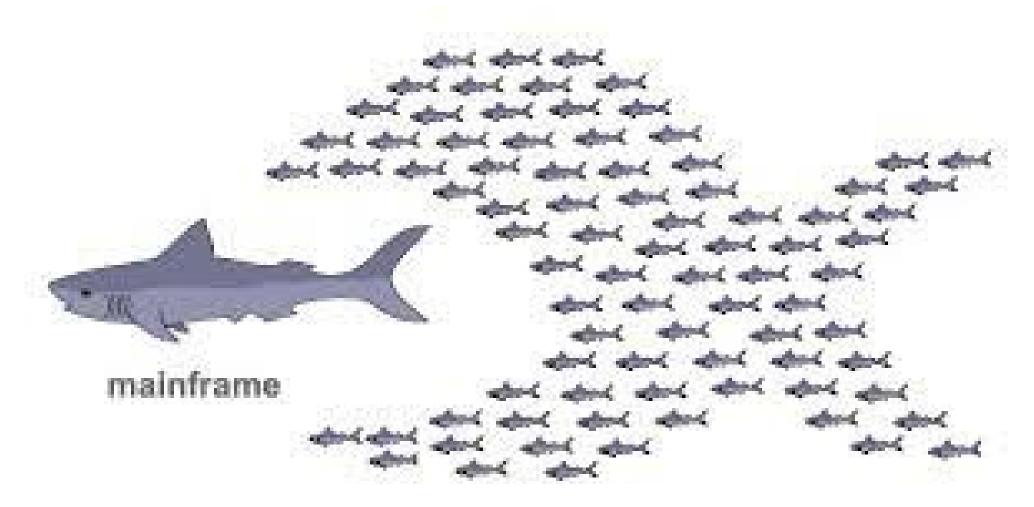
História

Mainframes

 Anos 1950 e 1960: Nesse período, os mainframes dominavam a computação empresarial. Eles eram computadores centralizados e poderosos, acessados por terminais remotos.

PC (Personal Computer)

Anos 1970 e 1980: O surgimento dos PCs (Computadores Pessoais)
 descentralizou o processamento e tornou a computação mais acessível
 para usuários individuais.


Cluster

 Anos 1990: A computação em cluster ganhou destaque, onde várias máquinas eram conectadas em rede para trabalharem juntas como uma única unidade de processamento.

Essa abordagem aumentou o poder
 de processamento e a
 disponibilidade.

Cluster

PC cluster

Super Computadores

Rank	System	Cores	(PFlop/s)	(PFlop/s)	(kW)
1	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE D0E/SC/Oak Ridge National Laboratory United States	8,699,904	1,194.00	1,679.82	22,703
2	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442.01	537.21	29,899
3	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE EuroHPC/CSC Finland	2,220,288	309.10	428.70	6,016
4	Leonardo - BullSequana XH2000, Xeon Platinum 8358 32C 2.6GHz, NVIDIA A100 SXM4 64 GB, Quad-rail NVIDIA HDR100 Infiniband, Atos EuroHPC/CINECA Italy	1,824,768	238.70	304.47	7,404
5	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Melianox EDR Infiniband, IBM D0E/SC/Oak Ridge National Laboratory United States	2,414,592	148.60	200.79	10,096
6	Sierra - IBM Power System AC922, IBM POWER9 22C 3.16Hz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	1,572,480	94.64	125.71	7,438
7	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway, NRCPC National Supercomputing Center in Wuxi China	10,649,600	93.01	125.44	15,371
8	Perlmutter - HPE Cray EX235n. AMD EPYC 7763 64C	761.856	70.87	93.75	2.589

https://www.top500.org/lists/top500/2023/06/

Super Computadores Cores: 8,699,904

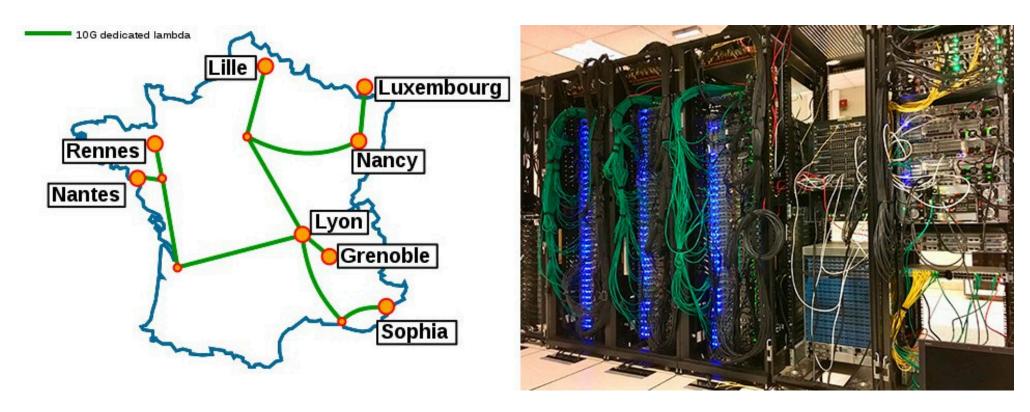
Super Computadores

Inspirado no famoso inventor e aviador brasileiro, o Santos Dumont é novamente o maior computador da América Latina dedicado à pesquisa científica e está, pela segunda vez, no Top 500 do Mundo.

O supercomputador instalado em 2015 no LNCC, foi o primeiro no Brasil em Petascala. Em 2019, com a iniciativa do consórcio de Libra e liderado pala Petrobras, o Santos Dumont aumentou 5 vezes sua capacidade para conduzir a comunidade científica para um novo patamar de pesquisa e desenvolvimento.

https://sdumont.lncc.br

Grids


- Final dos anos 1990 e início dos anos 2000: O conceito de *grid computing* evoluiu, permitindo compartilhar recursos computacionais entre organizações e até mesmo países.
- O grid possibilitava a utilização de recursos ociosos para tarefas de alto desempenho.

fibre.com.br

Grids

Em resumo, um grid é um conjunto de clusters distribuídos em diferentes locais geográficos, interconectados por meio de uma rede de comunicação. Essa estrutura permite compartilhar recursos computacionais e de armazenamento entre esses clusters, possibilitando o processamento de tarefas de alto desempenho.

www.grid5000.fr

E a Computação em Nuvem?

Centralização

Definição NIST

A computação em nuvem é um modelo para permitir rede onipresente, conveniente e sob demanda acesso a um pool compartilhado de computação configurável recursos (por exemplo, redes, servidores, armazenamento, aplicativos e serviços) que podem ser rapidamente provisionados e liberados com o mínimo esforço de gerenciamento ou interação com o provedor de serviços

Simplificando...

A Computação em Nuvem é um modelo de fornecimento de recursos de TI (como servidores, armazenamento, bancos de dados, redes, software etc.) através da Internet.

Simplificando...

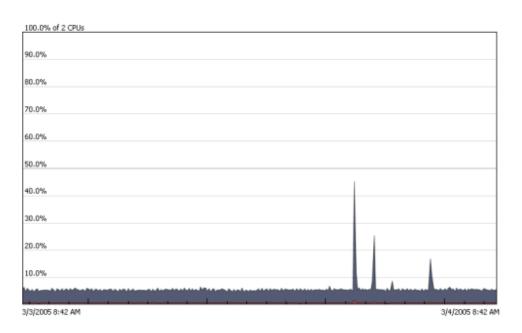
- Meados dos anos 2000: A ideia de fornecer recursos de TI pela Internet ganhou força.
- O avanço da virtualização e a expansão da banda larga foram essenciais para tornar a computação em nuvem viável.

Simplificando...

- Meados dos anos 2000: A ideia de fornecer recursos de TI pela Internet ganhou força.
- O avanço da virtualização e a expansão da banda larga foram essenciais para tornar a computação em nuvem viável.

Diferença entre nuvem e grid:

 A Computação em Nuvem Fornece recursos de TI pela Internet sob demanda.

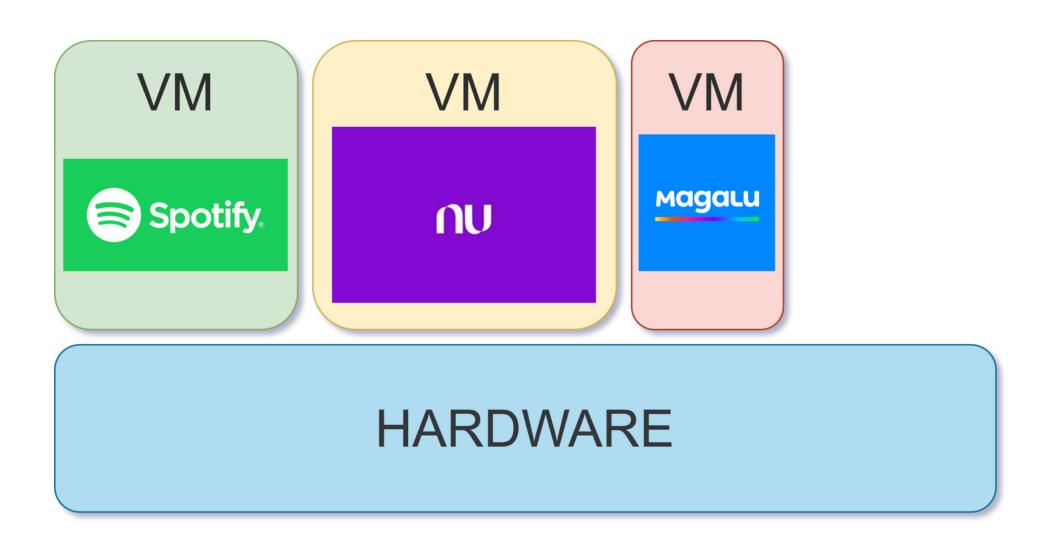

Virtualização

 Método para dividir recursos de um computador em múltiplos ambientes de execução usando várias técnicas – Particionamento de hardware e software.

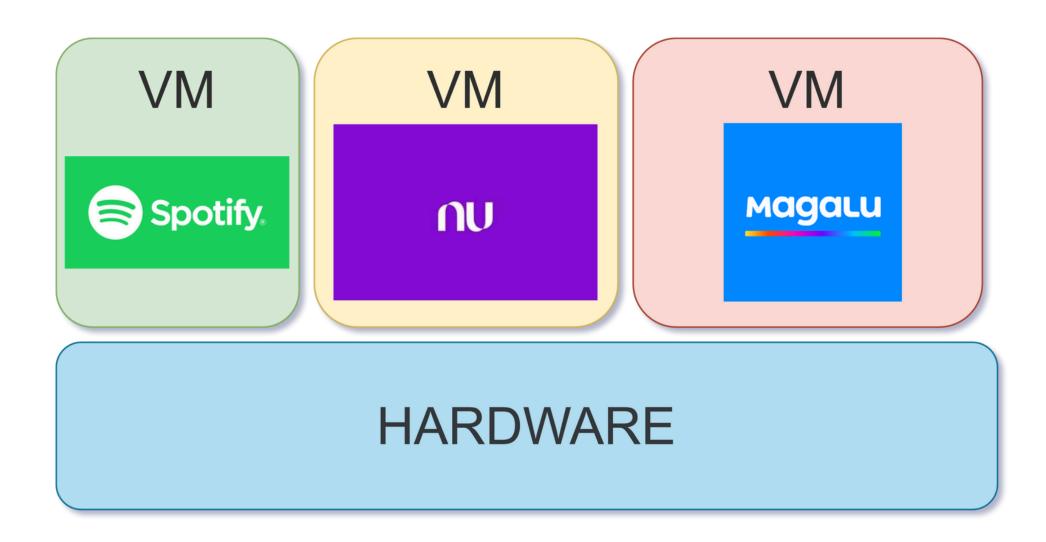

 Técnica que permite particionar um único sistema computacional em vários outros sistemas totalmente separados

Virtualização

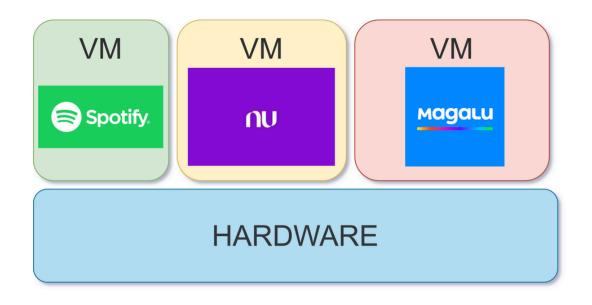
Antes de Virtualizar

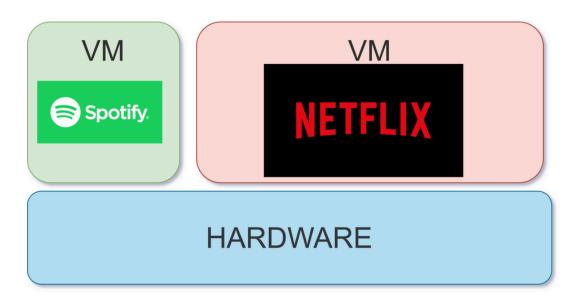


Depois de Virtualizar



Fonte: www.vmware.com


laaS (Infraestrutura como Serviço)



Escalabilidade Vertical

Escalabilidade Horizontal

Redução Custo

- Paga-se apenas pelo que é usado.
- Serviço mensurável.
- Elasticidade.
- Pool de recursos com independência de localização.
- Serviço mensurável.

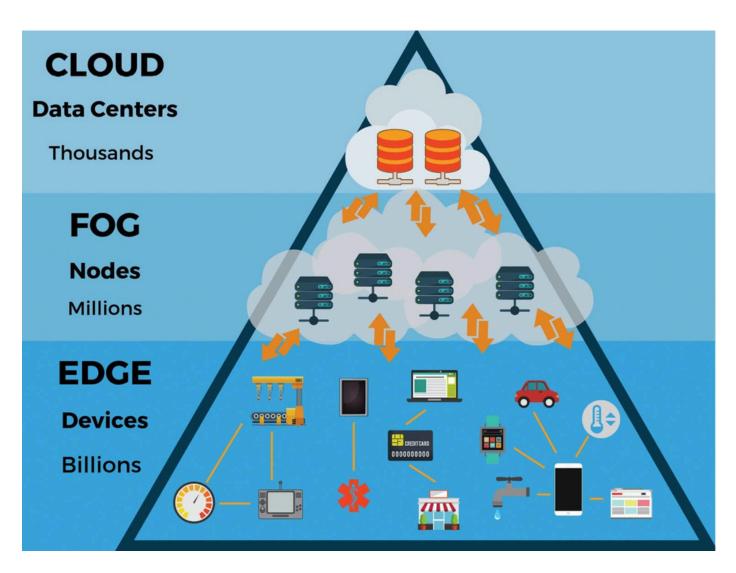
Mobilidade

Acesso aos recursos e serviços de qualquer lugar.

Exemplos de nuvens públicas pagas (laaS)

Google Cloud

Exemplos de nuvens públicas pagas (SaaS)


Tradicional (OnPremisse) vs Nuvem

Tradicional	Computação em Nuvem		
Investimento em hardware	Sem necessidade de investimento inicial		
Infraestrutura fixa	Recursos escaláveis e flexíveis		
Gerenciamento local	Gerenciamento simplificado		

Fog Computing Edge Computing

Descentralizando novamente?

Fog/Edge Computing?

Fog/Edge Computing?

- Redução de Latência.
- Redução de consumo de backbone compartilhados.
- Otimização da autônima enegética.
- Suporte a alta densidade de dispositivos (IoT).
- Utilização de cache.
- Descentralização de processamento na nuvem.
- Computação Offloading.

Referências

COULOURIS, G.; DOLLIMORE, J.; KINDBERG, T.; BLAIR, G. Sistemas Distribuídos: Conceitos e Projeto. 5 a Edição. Bookman, 2013. – Capítulos 3 e 7

JANSEN, W.; GRANCE, T. Guidelines on Security and Privacy in Public Cloud Computing. National Institute of Standards and Technology, 2011. Disponível em: https://csrc.nist.gov/pubs/sp/800/144/final. Acesso em: 27 ago. 2025.

MELL, P.; GRANCE, T. The NIST Definition of Cloud Computing. National Institute of Standards and Technology, 2011. Disponível em: https://csrc.nist.gov/pubs/sp/800/145/final . Acesso em: 27 ago. 2025.

BADGER, M.; GRANCE, T.; HARTMAN, S.; MELL, P.; SCOTT, D.; VOAS, J. Cloud Computing Synopsis and Recommendations. National Institute of Standards and Technology, 2012. Disponível em: https://csrc.nist.gov/pubs/sp/800/146/final . Acesso em: 27 ago. 2025.

Estes slides possuem direitos autorais reservados por uma licença Creative Commons:

https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode https://br.creativecommons.net/licencas/

Recies de Combiltadores

Marisangila Alves, MSc

marisangila.alves@proton.me