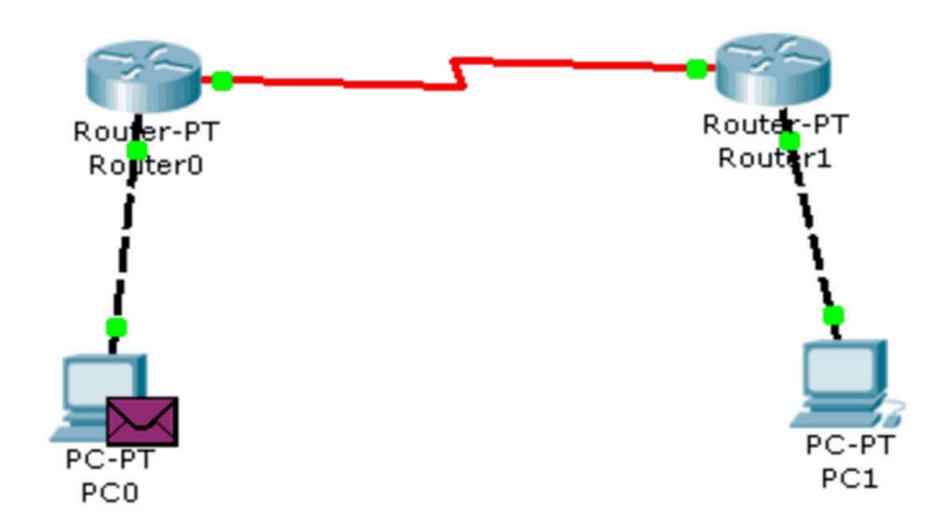

Recies de Combiltadores

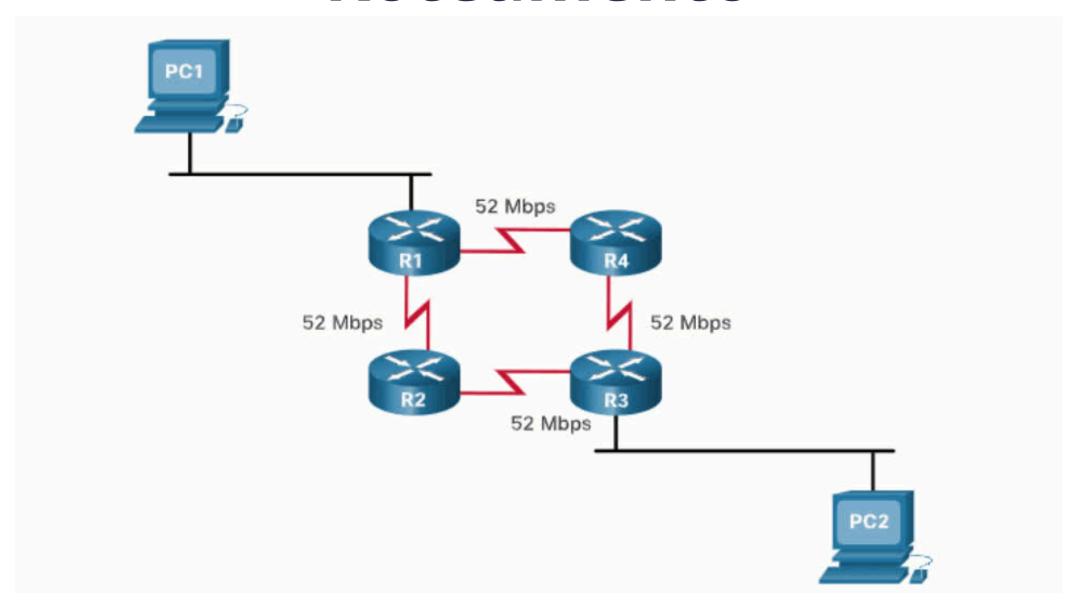
Marisangila Alves, MSc

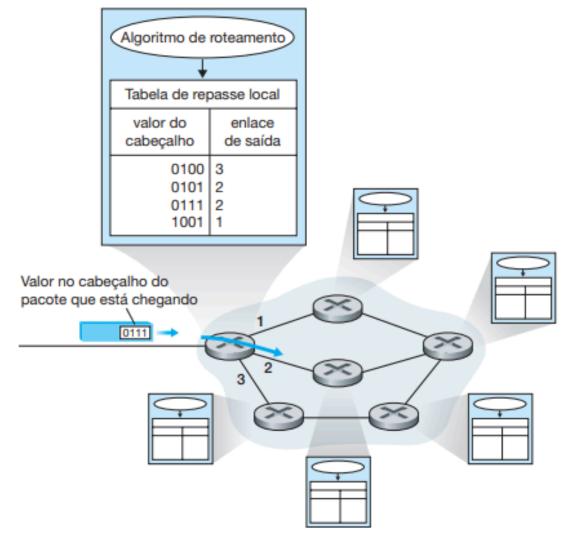
marisangila.alves@proton.me


A camada de rede é responsável pela movimentação de pacotes entre hospedeiros rementes e hospedeiros destinatários.

Repasse

Quando um pacote chega ao enlace de entrada de um roteador, este deve encaminha-lo até o enlace de saída apropriado.


Repasse

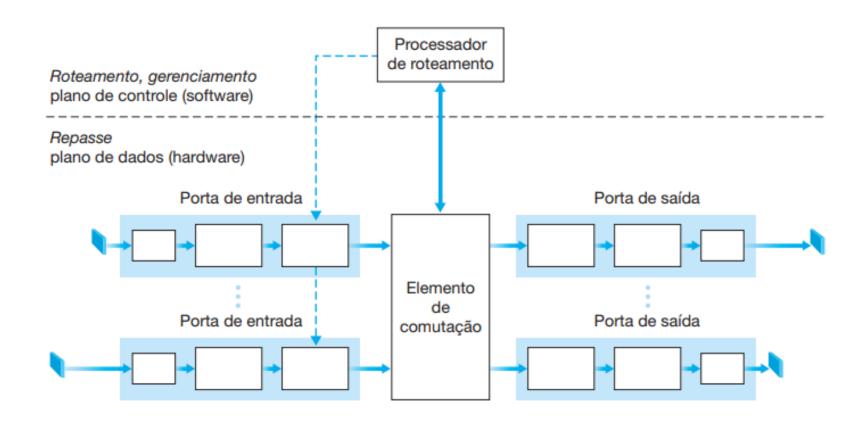

Roteamento

A camada de rede deve determinar a rota ou o caminho tomado pelos pacotes ao fluírem de um remetente a um destinatário. Os algoritmos que calculam esses caminhos são denominados algoritimo mos de roteamento.

Roteamento

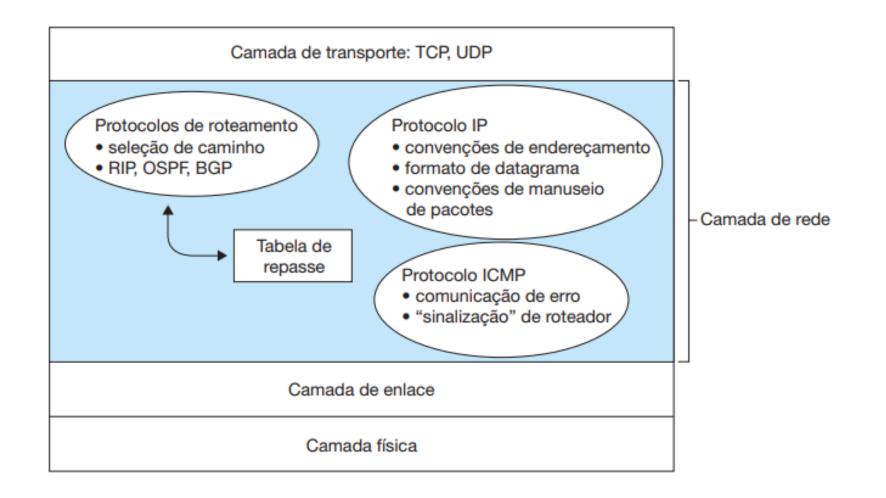
Repasse e Roteamento

Roteador



O que há dentro do roteador?

O que há dentro do roteador?


O que há dentro do roteador?

- Porta de entrada: interface de rede por onde o roteador recebe pacotes.
- Porta de saída: interface de rede por onde o roteador envia pacotes.
- Elemento de comutação: conecta a porta de entrada a porta de saída.
- Processamento do Roteador: Gerenciamento, algortimos de roteamento, tabelas de repasse.

Atenção: Não confuda porta de interface de rede com porta de processo usadas na camada de transporte.

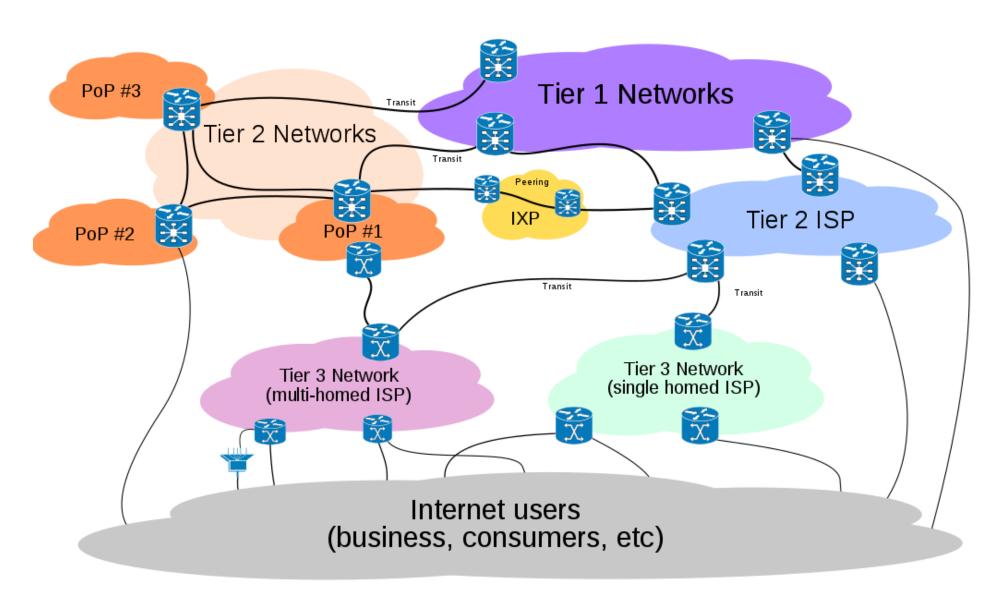
Protocolos da Camada de Rede

Protocolos da Camada de Rede

Um AS (Sistema Autônomo) é uma rede ou conjunto de redes interconectadas que são administradas por uma única organização ou provedor de serviços de internet.

AS - Sistemas autônomos

Exemplo:


• Uma rede corporativa a qual possui múltiplas redes conectadas entre si que conectam filiais.

 A rede de um provedor de internet consiste em múltiplas redes que podem abranger amplas localizações geográficas.

Tier 1: Provedores globais que possuem uma rede extensa e não pagam por peering, conectando-se diretamente a todos os outros AS Tier 1.

Tier 2: Provedores regionais que pagam por acesso a algumas redes, mas também se conectam a outros ASs e oferecem serviços a ISPs menores e empresas.

Tier 3: Provedores locais ou de menor escala que geralmente compram conectividade de Tier 1 ou Tier 2 e vendem acesso à Internet para consumidores e empresas.

• POP (*Point of Presence*): É um local onde um provedor de serviços de Internet tem equipamentos para interconexão e oferece serviços de conectividade, mas não necessariamente promove a troca de tráfego entre diferentes redes.

ou IXP (Internet Exchange Point)

Um local físico onde diferentes redes e provedores de serviços de internet se conectam para trocar tráfego de forma direta.

É um ponto de encontro neutro que facilita a interconexão eficiente de diversas redes.

Protocolos da Camada de Rede

Protocolos de Roteamento: RIP, OSPF, BGP. Calculam as tabelas de repasse que são usadas para transmitir pacotes pela rede.

Protocolos de erros e infomrações: ICMP (Internet Control Message Protocol).

IPV4

(Internet Protocol)

- O protocolo IP é responsável por atribuir uma identificação numérica a cada dispositivo (computador, impressora, smartphone etc.) conectado a uma rede.
- Um endereço IP pode identificar a interface de hospedeiro ou de rede e endereçamento de localização.
- O Protocolo de Internet versão 4 (IPv4) define um endereço IP como um número de 32 bits.

Cabeçalho do IPv4

32 bits

Versão	Comprimento do cabeçalho	Tipo de serviço	Comp	orimento do datagrama (bytes)					
	Identificador de	16 bits	Flags	Deslocamento de fragmentação (13 bits)					
Tempo de vida Protocolo da camada superior			Soma de verificação do cabeçalho						
Endereço IP da origem									
Endereço IP do destino									
Opções (se houver)									
Dados									

Cabeçalho do IPv4

■ Wireshark · Packet 1743 · Wi-Fi

```
Frame 1743: 138 bytes on wire (1104 bits), 138 bytes captured (1104
  Ethernet II, Src: MitraSta 21:7a:08 (d8:c6:78:21:7a:08), Dst: HonHail
Internet Protocol Version 4, Src: 192.168.15.1, Dst: 192.168.15.97
      0100 .... = Version: 4
      .... 0101 = Header Length: 20 bytes (5)
   Differentiated Services Field: 0xc0 (DSCP: CS6, ECN: Not-ECT)
      Total Length: 124
      Identification: 0x7a40 (31296)
   > 000. .... = Flags: 0x0
      ...0 0000 0000 0000 = Fragment Offset: 0
      Time to Live: 64
      Protocol: ICMP (1)
      Header Checksum: 0x5fce [validation disabled]
      [Header checksum status: Unverified]
      Source Address: 192,168,15,1
      Destination Address: 192,168,15.97
  Internet Control Message Protocol
```

Endereço IP:

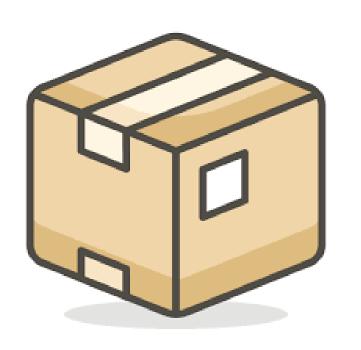
10.1.85.215

Endereço IP em formato binário (32bits): 00001010.000000001.01010101.11010111

Conversão IP decimal para binário

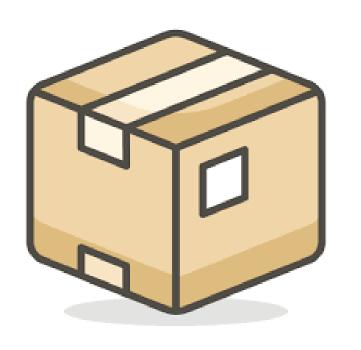
1º octeto
2º octeto
3º octeto
4º octeto

		128	64	32	16	8	4	2	1
to	10	0	0	0	0	1	0	1	0
to	1	0	0	0	0	0	0	0	1
to	85	0	1	0	1	0	1	0	1
to	215	1	1	0	1	0	1	1	1

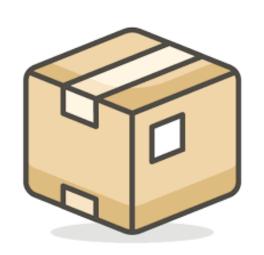

Decimal

Binário

10.1.85.215 00001010.00000001.01010101.11010111

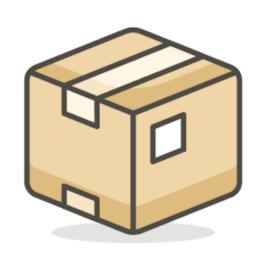

Analogia:

Para que um produto adquirido em um E-commerce e seja entregue para você, é essencial que informe o seu endereço de entrega.

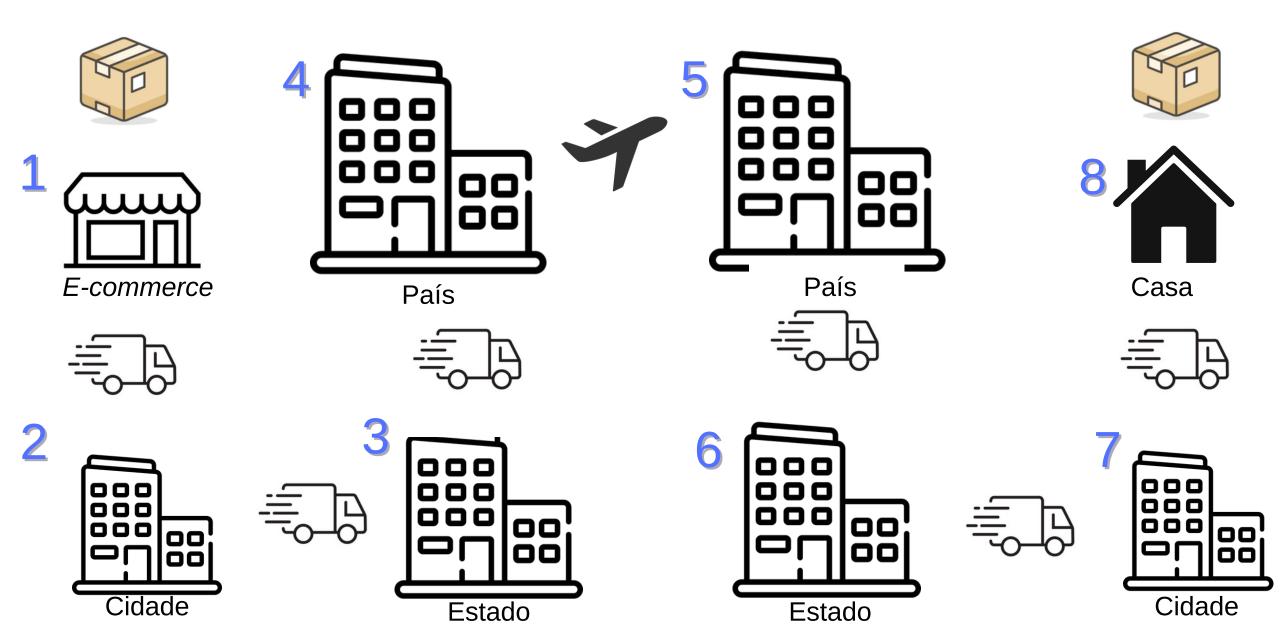

Considere que o endereço do rementente é o seguinte:

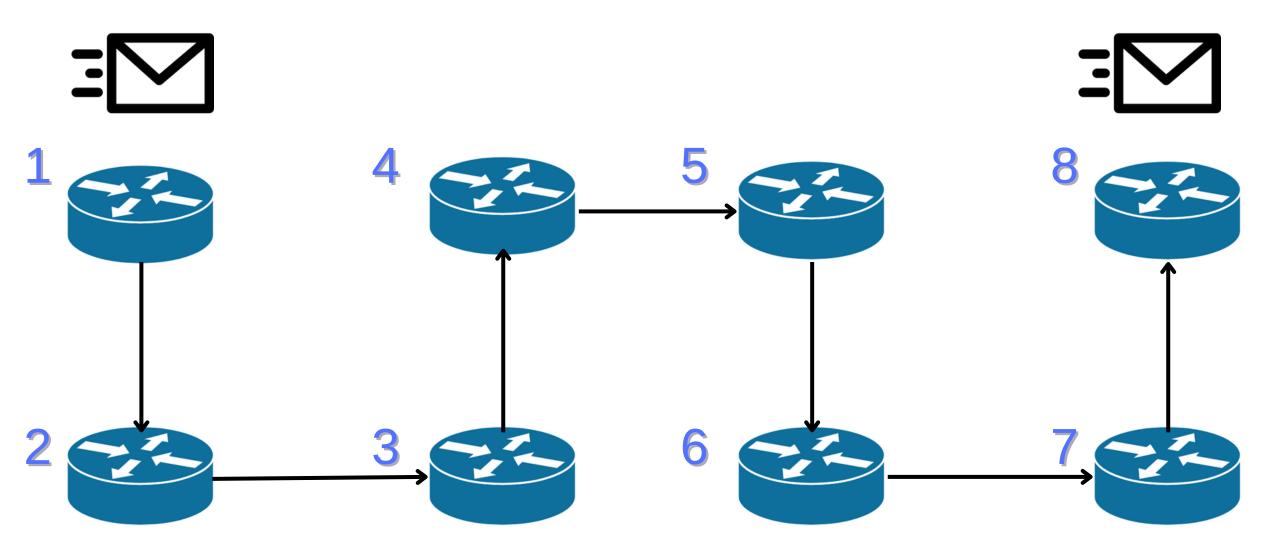
21 Fuxing Rd, Futian District, Shenzhen, Guangdong Province, China

O endereço do destinário deve ser o seu. Suponhamos que seja:


52, Rua do Príncipe, Centro, Joinville, Santa Catarina, Brasil

O Pacote deve viajar entre origem e destino.



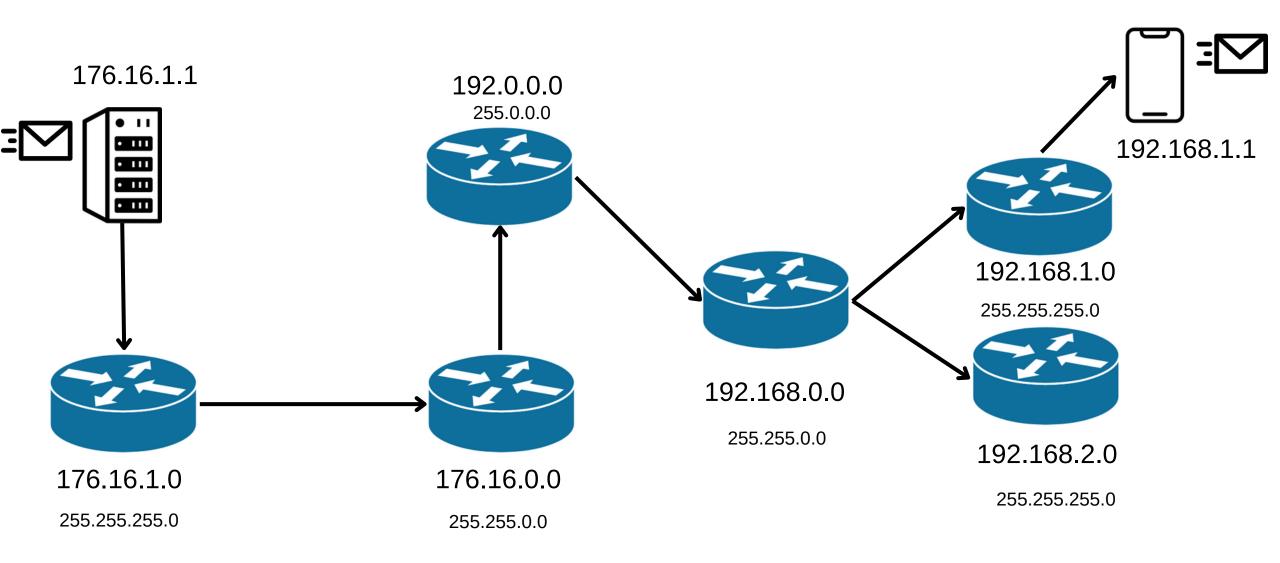


No entanto, é provavel que o pacote passe por vários pontos intermediários até chegar ao seu destino.

Para simplificar imagine que o E-commerce deposita o pacote na agência de entrega local, depois o pacote segue para a agencia da provincia/estado, depois para a agência nacional.

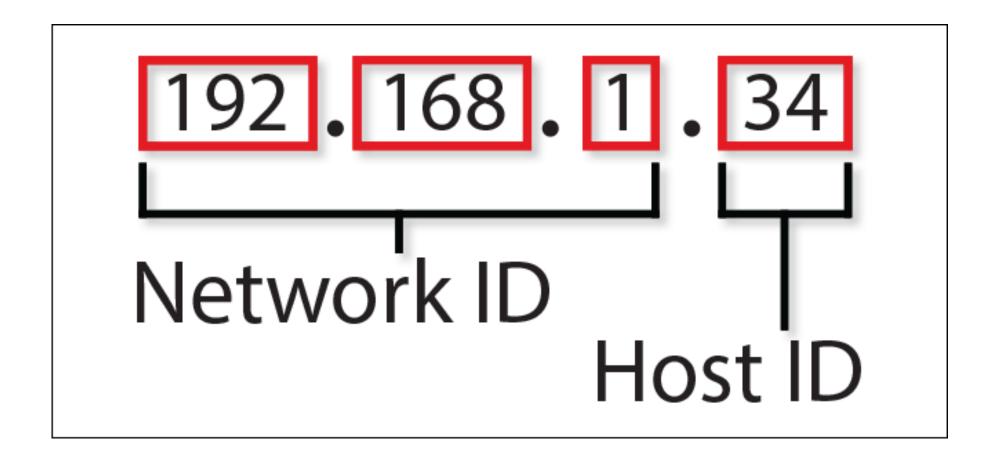
Em seguida, chega a agência nacional do outro pais, posteriormente segue para agência estadual e finalmente local, depois o entregador entrega o pacote na sua casa.

Rementente:

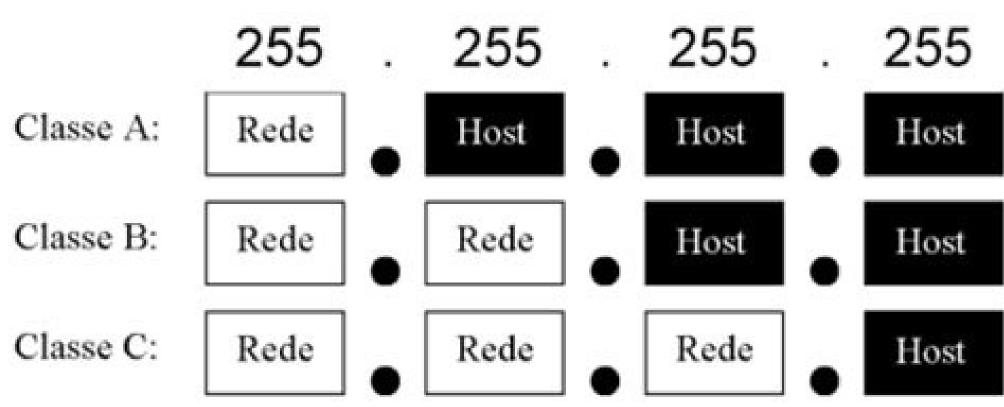

21 Fuxing Rd, Futian District, Shenzhen, Guangdong Province, China

China. Guangdong Province. Shenzhen. 21 Fuxing Rd, Futian District

<u>176.16.1</u>.<u>1</u>


redes e sub redes | dispositivo final

- Observando o endereço completo é possível identificar o destinário.
- Note que se fragmentarmos o endereço teremos informações que definem a rota.
- Sabemos então que cada parte do endereço representa uma hierarquia.


Endereçamento IP

Parte de um endereço IP pode representar uma rede e outra parte pode representar subredes ou hosts.

Classes IP

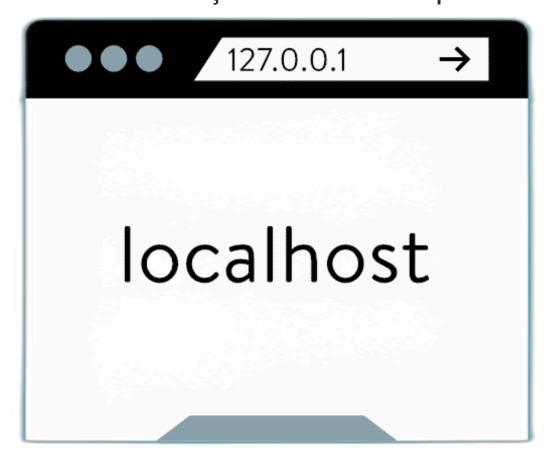
Octetos:

Classes IP

	Datasatus	Parte da rede (N) e		P-Billion-	
Classe	Primeiro Octeto	parte para hosts (H)	Máscara	Nº Redes	Endereços por rede
A	1-127	N.H.H.H	255.0.0.0	126 (2 ⁷ -2)	16,777,214 (2 ²⁴ -2)
В	128-191	N.N.H.H	255.255.0.0	16,382 (2 ¹⁴ -2)	65,534 (2 ¹⁶ -2)
С	192-223	N.N.N.H	255.255.255.0	2,097,150 (2 ²¹ -2)	254 (2 ⁸ -2)
D	224-239	Multicast	NA	NA	NA
E	240-255	experimental	NA	NA	NA

IP público vs IP privado

- Um endereço IP privado é usado dentro de uma rede local para identificar dispositivos individualmente.
- Um endereço IP público é atribuído pela Internet para permitir a comunicação entre diferentes redes.


Classe	Intervalo de Início	Intervalo de Fim
A	10.0.0.0	10.255.255.255
В	172.16.0.0	172.31.255.255
С	192.168.0.0	192.168.255.255

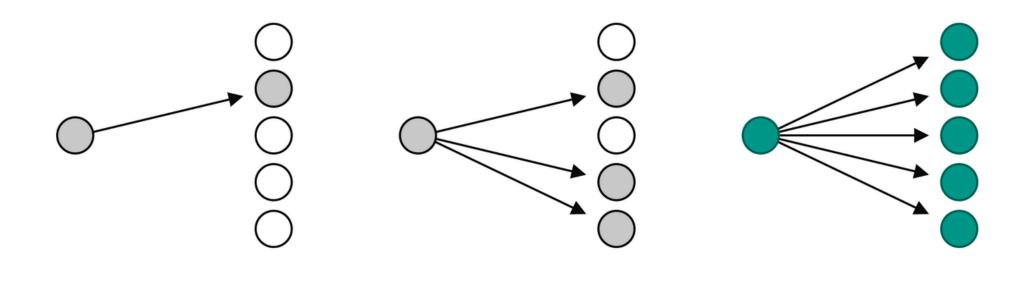
Endereçamento IP especial

Localhost

 A faixa de IP 127.0.0.0 – 127.255.255.255 (ou 127.0.0.0/8 na notação CIDR) é reservada para a comunicação com o computador

local (localhost).

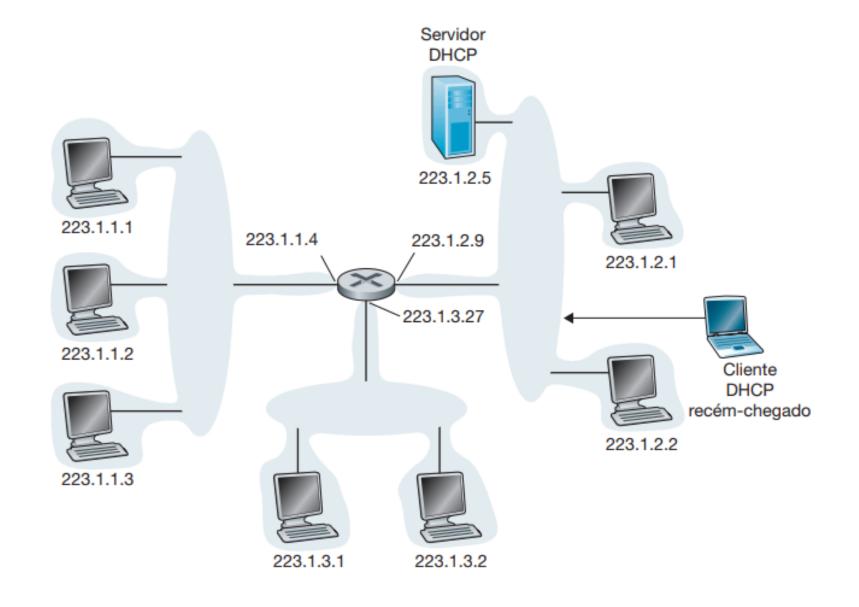
Classe endereçamento IP

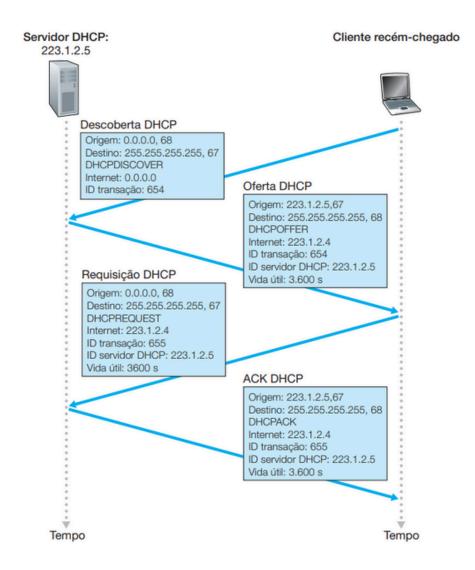

Localhost:

 Quaisquer pacotes enviados para estes endereços ficarão no computador que os gerou e serão tratados como se fossem pacotes recebidos pela rede (<u>Loopback</u>).

255.255.255.255: Broadcast.

IP reservado para Broadcast: 255.255.255.255

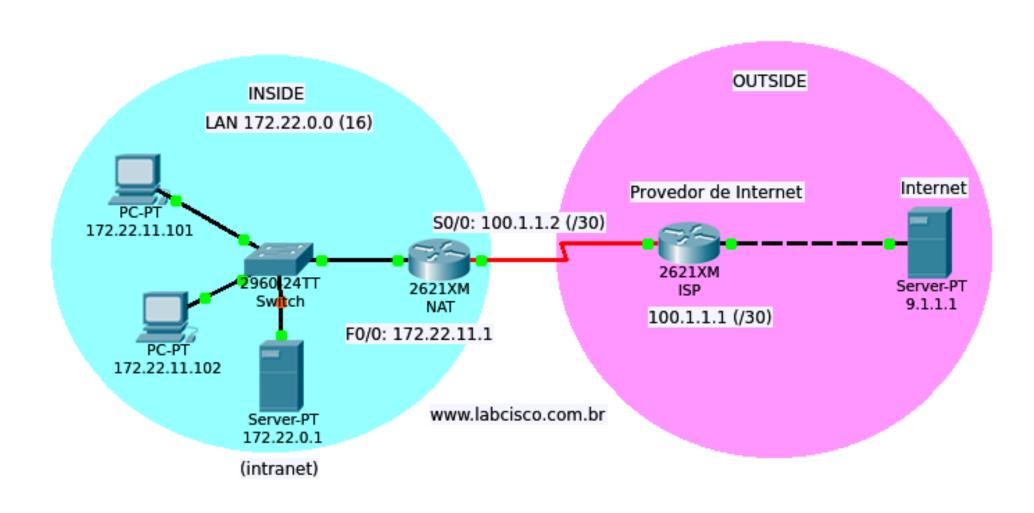

Unicast



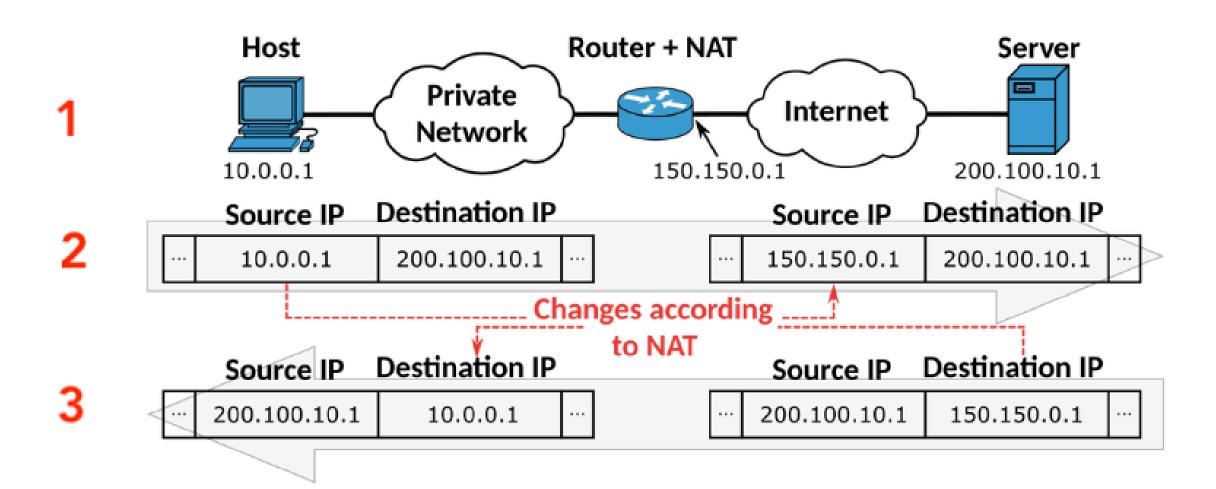
Multicast

Broadcast

- Quando um dispositivos se conectada a uma rede nova, ele não tem um IP.
- Então a primeira tarefa de um dispositivo recém-chegado é encontrar um servidor DHCP com quem interagir. Isso é feito utilizando uma mensagem de descoberta DHCP, a qual o dispositivo envia dentro de um pacote UDP.
- Em seguida o servidor DHCP atribui um IP para este novo dispositivo.



APIPA (Automatic Private IP Addressing):


- Método usado para atribuir automaticamente um endereço IP privado quando não é possível obter um endereço de um servidor DHCP.
- APIPA usa endereços na faixa de 169.254.0.1 a 169.254.255.254.
- Se um dispositivo não conseguir um endereço IP via DHCP, ele automaticamente atribui a si mesmo um endereço IP APIPA, permitindo que se comunique com outros dispositivos na mesma sub-rede APIPA.
- Comunicação apenas na LAN.

- Em uma rede privada, como uma rede doméstica ou corporativa, os dispositivos são geralmente atribuídos a endereços IP privados, que não são visíveis pela Internet pública.
- Esses endereços IP privados são usados para identificar os dispositivos dentro da rede local, mas não podem ser usados diretamente para se comunicar com a Internet.

 Quando um dispositivo da rede privada deseja acessar recursos na Internet, o NAT entra em ação. Ele atua como um intermediário entre a rede privada e a Internet, realizando a tradução de endereços IP.

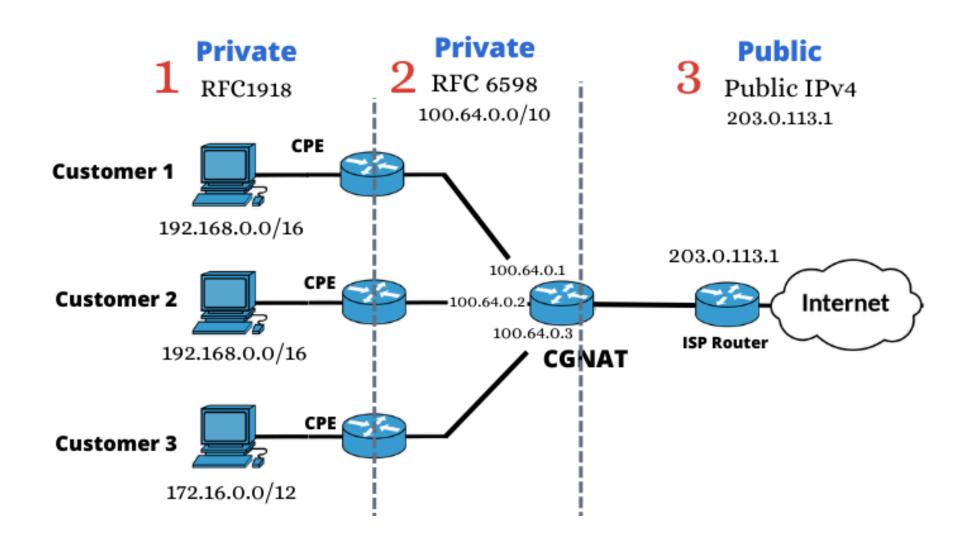
- Observe a figura:
 - Se o PC 172.22.11.101 acessar o site no servidor WEB
 9.1.1.1 que está em outra rede.
 - O pacote será enviado ao IP público conhecido na Internet que é: 100.1.1.1. (Este é o IP do roteador da rede onde está o servidor WEB).
 - O roteador 100.1.1.1 faz a tradução e encaminha o pacote para o servidor WEB 9.1.1.1. (Apenas o roteador conhece esse IP, porque este IP pertence a sua rede).

• NAT Estático:

- Mapeamento um-para-um entre um IP público e um IP privado.
- Útil quando um dispositivo interno precisa ser acessado externamente.

NAT Dinâmico:

- Mapeamento de vários IPs privados para um pool de IPs públicos.
- Os IPs públicos são atribuídos conforme necessário.


NAT Sobrecarga (PAT):

- Também conhecido como NAT de Sobrecarga ou NAT com PAT (Port Address Translation).
- Vários IPs privados compartilham um único IP público, diferenciados pelo número da porta.
- Economiza endereços IP.

• CGNAT (Carrier-Grade NAT):

- NAT em Nível de Provedor;
- Utilizado por provedores de internet para gerenciar a escassez de endereços IPv4;
- Vários clientes compartilham um único IP público, diferenciados por portas;
- Pode causar problemas de rastreamento de usuários e limitações de conexão.

CGNAT (Carrier-Grade NAT):

• CGNAT (Carrier-Grade NAT):

- O CGNAT utiliza endereços de uma faixa específica de endereços IP privados, conforme definido pela RFC 6598.
- Essa faixa é 100.64.0.0/10,

Máscaras e subredes

- Máscara:
 - Máscara determina o tamanho da rede!
 - Determina qual parte do IP representa uma sub-rede ou host.
 - Semelhante ao endereço IP.
 - 4 octetos, mas não é um endereço IP!

• Recepção do Pacote: Quando um roteador recebe um pacote, ele analisa o endereço IP de destino contido no pacote.

 Aplicação da Máscara: O roteador aplica a máscara de sub-rede ao endereço IP de destino usando a operação AND. Isso resulta no endereço da rede, que indica a qual rede o pacote pertence.

• Tabela de Roteamento: O roteador compara o endereço da rede resultante com suas entradas na tabela de roteamento, que contém informações sobre como encaminhar pacotes para diferentes redes.

• Encaminhamento: Com base na correspondência entre o endereço da rede e sua tabela de roteamento, o roteador determina o próximo salto (outro roteador ou dispositivo) para onde o pacote deve ser enviado, encaminhando-o na direção correta até que chegue ao seu destino final.

• Exemplo:

- IP Decimal: 10.8.16.128
- IP Binário: 00001010.00001000.00010000.10000000
- Máscara Decimal: 255.255.255.0

Exemplo:

Operação Lógica AND:

IP: 00001010.00001000.00010000.01111100

Resultado: 00001010.00001000.00010000.00000000

• Exemplo:

- Endereço da Rede: 10.8.16.0
- Endereço de Broadcast: 10.8.16.255
- Intervalo de Hosts: 10.8.16.1 a 10.8.16.254

Isso significa que todos os dispositivos com endereços IP na forma 10.8.16.X estão na mesma rede.

• Atenção:

- O endereço da rede 10.8.16.0, identifica a rede e não deve ser atribuído aos hosts.
- O último endereço de uma rede é utilizado para enviar pacotes de *broadcast*, permitindo que a mensagem seja entregue a todos os dispositivos dessa rede, nesse caso: 10.8.16.255.
- O intervalo de endereços, determina quais endereços podem ser atribuídos aos hosts e ao gateway, sendo eles: 10.8.16.1 a 10.8.16.254.
 - É comum que o primeiro ou o último endereço do intervalo seja atribuído ao *gateway* da rede.

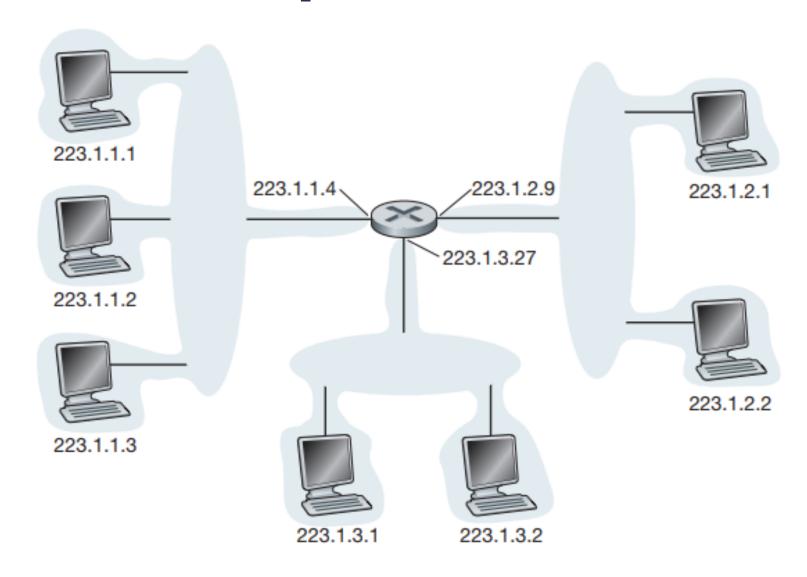
- Outro Exemplo 192.168.15.0
 - Máscara: 255.255.255.0:
 - Suporta 255 endereços IP.
 - 192.168.15.1 até 192.168.15.255
 - IP para Gateway: 192.168.15.1
 - IP reservado para *broadcast*: 192.168.15.255
 - Portando, há 254 endereços IP disponíveis para subredes ou hosts.
 - A máscara pode ser descrita em notação CIDR:
 - 255.255.255.0/24 -> 24 bits reservados para rede.

CIDR (Classless Inter-Domain Routing)

- Essa notação é um método de designação de endereços IP que utiliza um formato de prefixo, representado como um endereço IP seguido por uma barra e um número.
 - Exemplo: 192.168.1.0/24;
 - Onde o número indica a quantidade de bits que compõem a parte da rede do endereço.

Notação decimal e CIDR

CIDR	Máscara Decimal	Número de Hosts	Máscara Binária
/30	255.255.255.252	2 hosts	11111111.111111111111111111111111111111
/29	255.255.255.248	6 hosts	11111111.11111111111111111111000
/28	255.255.255.240	14 hosts	11111111.11111111111111111110000
/27	255.255.255.224	30 hosts	11111111.111111111111111111100000
/26	255.255.255.192	62 hosts	11111111.11111111111111111111000000
/25	255.255.255.128	126 hosts	11111111.111111111111111111110000000
/24	255.255.255.0	254 hosts	1111111111111111111111111100000000
/23	255.255.254.0	510 hosts	111111111111111111111110.00000000
/22	255.255.252.0		111111111111111111111100.00000000
/21	255.255.248.0	2046 hosts	111111111111111111111000.00000000


Máscaras e subredes

• Exemplo:

- Máscara de rede notação CIDR: /24
- Máscara de rede notação decimal: 255.255.255.0
- Endereço de rede: 1.0.0.0/24
- Primeiro IP utilizável da rede: 1.0.0.1 (Gateway)
- Último IP utilizável da rede: 1.0.0.254
- Endereço de broadcast: 1.0.0.255
- Então os hosts têm endereços entre 1.0.0.2 e 1.0.0.254

 Uma sub-rede é uma subdivisão lógica de uma rede maior que permite organizar, gerenciar e otimizar a distribuição de endereços
 IP. Essa técnica é utilizada para segmentar uma rede em partes menores

Hierarquias e subredes

Exemplo:

Uma rede que suporte 253 *hosts* pode ser calculada da seguinte forma:

Para determinar o número de bits necessários para suportar 253
 hosts, utilizamos a fórmula:

$$2^x - 2 = hosts$$

• Onde x é o número de bits.

$$\circ$$
 28 = 256

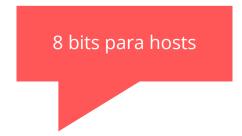
Exemplo:

- Desconsidera-se dois endereços porque:
 - O primeiro é utilizado como endereço de rede.
 - O último é utilizado como endereço de broadcast.
- Um endereço é usado como *gateway*, mas esse não deve ser incluído entre os endereços disponíveis para hosts.

Exemplo:

Assim, para suportar 253 hosts, a rede deve ser configurada para um total de 256 endereços, utilizando uma máscara de sub-rede que permita 8 bits para os hosts (255.255.255.0).

Encontrando a mascara em notação decimal


Se a rede precisa suportar 253 host,

Portanto, $2^8 = 254$,

Logo são necessários 8 bits para endereçar 253 hots

Assim restam 24 bits para a rede, a rede é /24 ou 255.255.255.0

24 bits para rede

11000000.10101000.00000000.00000000

192.168.0.0

Encontrando a mascara em notação decimal

Protocolos de Roteamento

Protocolos de Roteamento

Um protocolo de roteamento é um conjunto de regras e procedimentos que permite que os roteadores troquem informações de roteamento e tomem decisões sobre a melhor rota para encaminhar pacotes em uma rede.

Roteamento Estático

No roteamento estático as **rotas são manualmente configuradas** pelos
administradores de rede e não se ajustam
automaticamente a mudanças na topologia.

Protocolos de Roteamento Dinâmico

RIP (Routing Information Protocol)

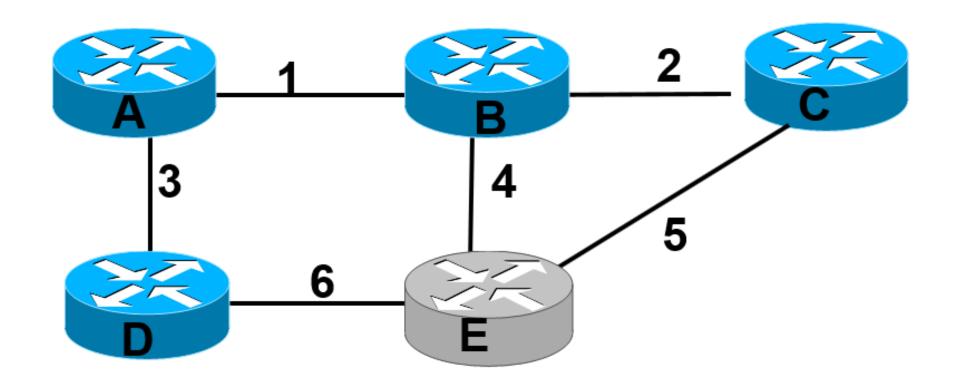
- Criado pela a XNS (Xerox Network Systems) em 1982.
- Usado em roteamento inter-AS.
- Usa contagem de saltos como métrica para definir o menor caminho e melhor rota.

RIP (Routing Information Protocol)

Decentralizado.

 Atualizações de roteamento são trocadas entre vizinhos a cada 30 segundos.

 Cada roteador anúncia todas as rotas conhecidas aos seus roteadores vizinhos.


RIP (Routing Information Protocol)

- Permite simples configuração.
- Pode ser usado em pequenas redes.
- Em uma rede complexa o tempo de atualização de todas tabelas pode ser lento, isso faz com que tabelas de roteamento permaneçam desatualizadas.

Roteamento de Vetor de Distância

- Bellman-Ford;
- RIP e EIGRP;
- Métricas:
 - Saltos.
 - Atraso.

Roteamento de Vetor de Distância

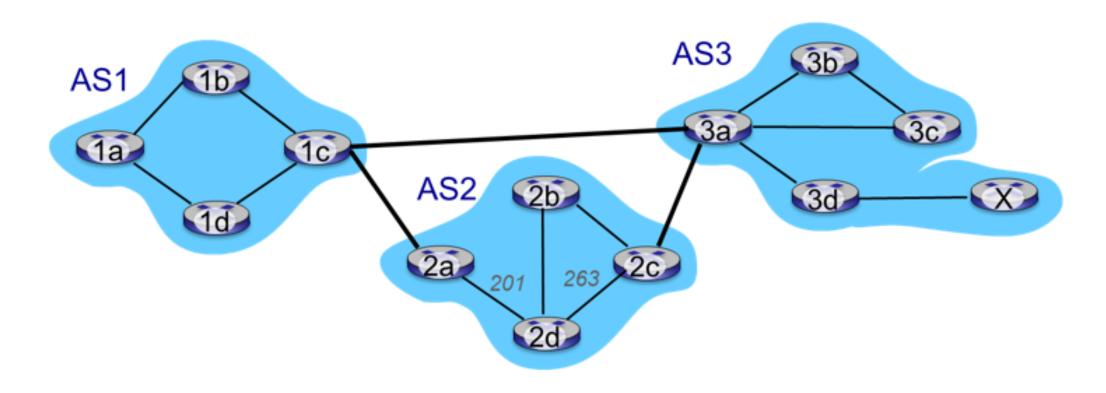
OSPF (Open Shortest Path First)

- Roteamento inter-AS.
- Visão global da Rede.
- Permite definir o melhor caminho considerando o menor custo.
- Ao custo podem ser atribuídos métricas de largura de banda, delay e quantidade de tráfego.

RIP vs OSPF

Tipo de Algoritmo	Vetor de Distância	Estado de Link	
Métrica	Número de saltos (hops)	Custo (geralmente baseado na largura de banda)	
Máximo de Saltos	15 saltos	Sem limite de saltos	
Escalabilidade	Limitado (menos eficiente para redes grandes)	Escalável (suporta redes grandes e complexas)	
Convergência	Lenta (pode levar minutos para convergir)	Rápida (geralmente segundos)	
Tipos de Mensagens	Atualizações periódicas (a cada 30 segundos)	Tipos de pacotes: Hello, LSAs (Link-State Advertisements)	
Tipo de Topologia	Baseado em redes de roteadores diretamente conectados	Baseado em áreas, com roteadores principais e secundários	
Protocolos de Rede Suportados	Apenas IPv4	IPv4 e IPv6	

intra-AS e inter-AS


 O roteamento intra-AS refere-se ao processo de encaminhamento de pacotes dentro de um único AS.

• O roteamento inter-AS envolve o encaminhamento de pacotes entre diferentes AS, permitindo a comunicação entre AS distintos. distintos.

BGP (Border Gateway Protocol)

- Roteamento intra-AS.
- Conecta roteadores de borda.
- Usado em roteamento entre ISP's diferentes ou em PTTs.
- Considera regras de administração para escolher a melhor rota.
- Normalmente, custo financeiro.

BGP (Border Gateway Protocol)

BGP (Border Gateway Protocol)

O BGP, sobretudo, permite que cada sub-rede anuncie sua existência ao restante da Internet. Uma sub-rede grita "Eu existo e estou aqui" e o BGP garante que todos os ASs da Internet saibam de sua existência e como chegar até ela. Não fosse o BGP, cada sub-rede ficaria isolada, sozinha e desconhecida pelo restante da Internet.

IPv6

- Uma motivação para a criação do IPv6 foi o entendimento de que o espaço de endereços IP de 32 bits estava começando a escassear, com novas sub-redes e nós IP sendo anexados à Internet (e ainda recebendo endereços IP exclusivos) a uma velocidade estonteante.
- Para atender a essa necessidade de maior espaço para endereços IP, foi desenvolvido um novo protocolo IP, o IPv6.
- Os endereços IPv6 são normalmente escritos como oito grupos de 4 dígitos hexadecimais.

IPv6

Abreviação IPv6

2001:0DC9:0000:0000:130F:0000:0000:004B

2001:0DC9:130F:0000:0000:0000:0000:004B

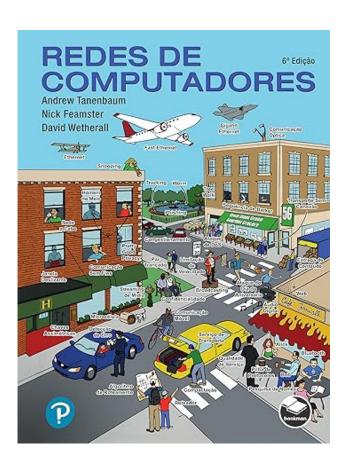
2001:DC9:130F:0:0:0:0:4B

2001:DC9:130F:0:0:0:0:4B

2001:DC9:130F::4B

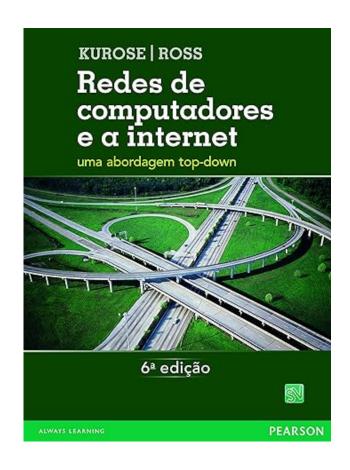
Sistemas numéricos

Decimal	Binario	Hexadecimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	Α
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F


ICMP (Internet Control Message Protocol).

Tipo ICMP	Código	Descrição	
0	0	resposta de eco (para ping)	
3	0	rede de destino inalcançável	
3	1	hospedeiro de destino inalcançável	
3	2	protocolo de destino inalcançável	
3	3	porta de destino inalcançável	
3	6	rede de destino desconhecida	
3	7	hospedeiro de destino desconhecido	
4	0	repressão da origem (controle de congestionamento)	
8	0	solicitação de eco	
9	0	anúncio do roteador	
10	0	descoberta do roteador	
11	0	TTL expirado	
12	0	cabeçalho IP inválido	

Leitura Recomendada


Capítulo 5 do livro:

Redes de Computadores

Capítulos 4 do livro:

Redes de Computadores e a internet

Referências

WETHERALL, J.; TANENBAUM, A. S. Redes de Computadores. 6ª edição. Rio de Janeiro: Editora Campus, 2021.

KUROSE, James F.; ROSS, Keith W. Redes de Computadores e a Internet. 5ª edição. São Paulo: Person, 2021.

FOROUZAN, Behrouz A. Comunicação de dados e redes de computadores. 4ª edição. AMGH Editora, 2010.

INTERNET ENGINEERING TASK FORCE (IETF). RFCs. Disponível em: https://www.ietf.org/process/rfcs/. Acesso em: 22 out. 2024.

Estes slides possuem direitos autorais reservados por uma licença Creative Commons:

https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode https://br.creativecommons.net/licencas/

Recies de Combiltadores

Marisangila Alves, MSc

marisangila.alves@proton.me